摘要冶金工业消耗大量的能源,其中钢坯加热炉就占钢铁工业总能耗的四分之一。
自70年代中期以来,各工业先进国对各种燃烧设备的节能控制进行了广泛、深入的研究,大大降低了能耗。
步进式加热炉不仅是轧线上最重要的设备之一,而且也是耗能大户。
钢坯加热的技术直接影响带钢产品的质量、能源消耗和轧机寿命。
因此步进式加热炉优化设定控制技术的推广对钢铁企业意义重大。
步进式加热炉的生产目的是满足轧制要求的钢坯温度分布,并实现钢坯表面氧化烧损最少和能耗最小。
由于步进式加热炉具有非线性、不确定性等特点,其动态特性很难用数学模型加以描述,因此采用经典的控制方法难以收到理想的控制效果,只能依靠操作人员凭经验控制设定值,当工况发生变化时,往往使工艺指标(如空燃比)实际值偏离目标值范围,造成产品质量下降消耗增加。
针对以上情况,本文通过理论和仿真比较说明使用双交叉限幅控制系统是一种比较好的燃烧控制方法。
关键词:步进式加热炉;空燃比;双交叉限幅;系统仿真AbstractMetallurgical industry consumes large amounts of energy, the billet heating furnace accounts for 1/4 of the total energy consumption of iron and steel industry. Since 70 time metaphase, the advanced industrial countries have conducted extensive research, in-depth on the energy saving control device of different combustion, greatly reduces the energy consumption.Reheating furnace is not only the most important one of the equipment of the rolling line, but also a large energy consumer. Billet heating technology directly affects strip steel product quality, energy consumption and mill life. The step type heating furnace optimal setting control technology is of great significance to the promotion of iron and steel enterprises. Step type heating furnace production is designed to meet the requirements of the temperature distribution of the billet rolling surface, and to achieve the fewest stock scale loss and energy consumption. Due to the characteristics of reheating furnace is a nonlinear, uncertainty, its dynamic characteristics is difficult to use mathematical model to describe, so using classic control theory to receive the ideal control effect, can only rely on the operation experience of the personnel to control the set value, when the conditions change, often make the process indicators (such as the air fuel ratio) the actual value is far from the target range, decrease the product quality consumption increase. In view of the above situation, this paper through theoretical and simulation results illustrate the use of double cross limiting control system is a good method for controlling combustion.Keywords: reheating furnace; air fuel ratio; double cross limit; system simulation目录摘要 (I)第一章引言 (1)第二章步进式加热炉 (4)2.1步进式加热炉简介 (4)2.2 步进式加热炉工艺过程 (5)2.3 加热炉控制技术的发展和现状 (8)第三章燃烧控制系统设计及仿真 (9)3.1 步进式加热炉生产工艺和控制要求 (9)3.2 燃烧控制系统及仿真 (10)3.2.1 Simulink简介 (10)3.2.2 仿真模型的建立 (11)3.2.3 串级比值控制系统设计及仿真 (12)3.2.4 单交叉限幅燃烧控制系统设计及仿真 (17)3.2.5 双交叉限幅控制系统设计及仿真 (22)3.2.6 偏置单元和炉膛负压控制系统简介 (29)第四章组态软件MCGS在加热炉控制中的应用 (30)4.1 MCGS简介 (30)4.2 MCGS在加热炉控制中的应用 (32)第五章仪表选型 (34)5.1 检测元件的选型 (34)5.1.1 温度检测 (34)5.2 压力和流量的测量 (36)5.3 变送器的选取 (37)5.3.1温度变送器 (38)5.3.2差压变送器的选取 (39)5.4 执行器的选择 (40)结束语 (42)参考文献 (43)致谢 (44)第一章引言工业锅炉广泛应用于炼油、冶金、化工、轻工、造纸、纺织与食品等行业。
每年消耗大量的原煤。
由于热工检测手段落后,自动控制系统不够完善及运行管理不良等原因,导致热效率比设计值低10%~20%。
并由于调节量过大的波动引起执行机构过度磨损,燃烧不稳定,热力设备与管道的热应力破坏,工艺次品率升高,锅炉冒黑烟,产生大量氮氧化物等造成环境污染。
许多厂家和单位已研制出多种工业锅炉的仪表或微机控制系统,并取得一定成效。
但运行实践表明,工业锅炉滞后和惯性大,反应慢,回路多,耦合性强,过程扰动与噪声大,以及对象特性由于积灰、结垢、电子元件老化,环境、负荷、煤质等原因而发生变化。
人们发现,燃烧调节系统已偏离最佳整定,要么反应迟钝,要么振荡太大,难以长期或在某些工况下运行。
而调节器的整定又很费时间,且要求相当的技术,因此常将其切换至手控运行方式。
不仅工人劳动强度大,且易使效率降低,污染加剧。
采用自适应控制可以使自控系统投入率提高,减少运行操作人员,节约能源,减轻污染。
自动燃烧控制系统的基本任务是在满足生产工艺的温度要求前提下,实现最佳燃烧控制以达到减少烧损、节约能源的目的。
根据燃烧机理,一般加热炉内空气过剩系数u的最佳范围为1.02~1.10,称为最佳燃烧带。
如果u过大,使火焰温度降低,氧化铁皮厚度增加即烧损增加;反之,u过小,既冒黑烟污染环境,又使燃烧效率下降。
一般情况下,加热炉燃烧控制都采用基本串级比值控制方案,或是其变化形式。
但由于空气管道时间常数比燃料回路大,当负荷突然发生变化时,这种控制方案不能保证u在最佳燃烧区。
为解决这一问题,许多人进行了深人研究,先后产生了几种交叉制约控制方案,使燃烧控制系统日趋完善[1]。
1、加热炉的工艺和结构在本文中加热炉使用的是步进式加热炉。
它由以下几个基本部分结构组成:炉膛和炉衬,燃料系统,供风系统,排烟系统,冷却系统,余热利用装置,装出料设备,检测及调节设备,电子计算机控制系统等。
步进式加热炉的工业过程:由连铸出坯辊道送来的板坯在装料辊道上自动测量板坯长度,合格板坯经电子称量装置称量后准备人炉。
炉子为双排料,装料端设置两台装料推钢机,板坯由装料辊道运至装料机口定位后,装料推钢机将板坯从装料辊道上推到炉子固定梁上,当需要入炉时计算机的控制系统发出指令,炉门升起,炉内步进梁再将其托起、前进、下降、后退,完成一个步进行程,而板坯向前移运了一个步距。
如此周而复始,板坯自装料端依次顺序经过炉子预热段、加热段、均热段,一步步地移送到炉子的出料端。
在出料端,激光检测器检测到板坯边缘并在步进梁完成一个水平行程运动后,算出板坯位置,当炉子接到信号后再自动开启出料炉门,用出钢机将加热好的板坯取出后,直接放在出料辊道上,出料辊道为单传辊道。
2、控制参数的选择燃烧过程的控制有以下三个基本要求:1)保证炉膛内温度稳定,能按要求自动增减燃料量;2)燃烧良好,供气适宜,既要防止由于空气不足使烟囱冒黑烟,也不要因空气过量而增加热量损失;3)保证锅炉安全运行。
保证炉膛一定的负压,以免负压太小,甚至为正,造成炉膛内热烟气往外冒,影响设备和工作人员的安全;如果负压过大,会使大量冷空气漏进炉内,从而使热量损失增加[7]。
因此,在本设计中要做两个控制系统。
一个是温度控制系统;一个是炉膛负压控制系统。
则控制参数分别为炉膛内温度和炉膛负压。
炉膛内温度范围是1100~1200℃,炉膛负压范围是0~-30Pa[3]。
3、控制燃烧方案燃烧自动调节系统包括热负荷、送风、引风三个调节回路。
其中,燃料量和送风量的比例是影响燃烧经济性的主要因素。
为了防止不完全燃烧,保证动态过程中风量始终有一定裕量,就需要采用单交叉控制(或称选择性控制),以实现加负荷时先加风后加燃料,减负荷时先减燃料后减风。
单交叉控制只有风对燃料的限制,没有燃料对风的限制,即可以保证风量始终有一定富裕量,但不能排除风量过大可能造成的热损失。
为此可采用双交叉控制,即在风量调节回路中再增加一个低值选择器,燃料回路中再增加一个高值选择器及必要的运算组件,以实现加负荷时先加风后加燃料,减负荷时先减燃料后减风,保证一定的空气裕量,同时又防止风量过大。
双交叉限幅经历了燃料先行的比值或空气先行的比值调节系统、串级串联燃烧控制系统、串级并联燃烧控制系统、串级并联单交叉限幅燃烧控制系统四个发展阶段。