当前位置:文档之家› 直流升压斩波电路课程设计

直流升压斩波电路课程设计

直流升压斩波电路课程设计The Standardization Office was revised on the afternoon of December 13, 2020湖南工学院课程设计说明书课题名称:直流升压斩波电路的设计专业名称:自动化学生班级:自本0903班学生姓名:**学生学号:指导教师:***电力电子技术课程设计任务书一、设计任务和要求(1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。

(2)掌握基本电路的数据分析、处理;描绘波形并加以判断。

(3)能正确设计电路,画出线路图,分析电路原理。

(4)广泛收集相关资料。

(5)独立思考,刻苦专研,严禁抄袭。

(6)按时完成课程设计任务,认真、正确的书写课程设计报告。

二、设计内容(1)明确设计任务,对所要设计地任务进行具体分析,充分了解系统性能,指标要求。

(2)制定设计方案。

(3)迸行具体设计:单元电路的设计;参数计算;器件选择;绘制电路原理图。

(4)撰写课程设计报告(说明书):课程设计报告是对设计全过程的系统总结。

三、技术指标斩波电路输出电压为340±5V,直流升压斩波电路输入电压为直流流24V~60V,输出功率为100W。

直流升压电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。

随之出现了诸如降压电路、升降压电路、复合电路等多种方式的变换电路。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

早期的直流装换电路,电路复杂、功率损耗、体积大,使用不方便。

晶闸管的出现为这种电路的设计又提供了一种选择。

晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅;晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。

它电路简单体积小,便于集成;功率损耗少,符合当今社会生产的要求;所以在直流转换电路中使用晶闸管是一种很好的选择。

主要元件介绍1 IGBT介绍本设计基于《电力电子技术》课程,充分使用全控型晶闸管IGBT设计电路,实现直流升压。

IGBT绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。

GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。

IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。

非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。

2 驱动电路M57962L简介M57962L是由日本三菱电气公司为驱动IGBT而设计的厚膜集成电路(Hybrid Integrated Circuit For Driving IGBT Modules) 。

在驱动模块内部装有2500V高隔离电压的光电耦合器,过流保护电路和过流保护输出端子,具有封闭性短路保护功能。

M57962L是一种高速驱动电路,驱动信号延时tPLH 和tPHL最大为μs。

可以驱动600V/400V 级的IGBT模块。

M57962L工作程序:当电源接通后,首先自检,检测IGBT是否过载或短路。

若过载或短路, IGBT 的集电极电位升高,经外接二极管流入检测电路的电流增加,栅极关断电路动作,切断IGBT 的栅极驱动信号,同时在“8”脚输出低电平“过载/短路”指示信号。

lGBT 正常时,输入信号经光电耦合接口电路,再经驱动级功率放大后驱动IGBT 。

3 M57962L 的工作原理M57962L 采用双电源+ Vcc 和VEE ,原理结构图如图1-1所示。

电路组成:(1) 放大隔离电路; (2) 定时复位电路;(3) 过流检测电路; (4) 过流输出电路。

图1-1 M57962L 原理机构图第1章 直流升压斩波电路的设计思想直流升压斩波电路原理直流升压变流器用于需要提升直流电压的场合,其原理图如图1-2所示。

在电路中V 导通时,电流由E 经升压电感L 和V 形成回路,电感L 储能;当V 关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到 图1-1 直流升压斩波电路原理图 高于电源的电压,二极管的作用是阻断V 导通是,电容的放电回路。

调节开关器件V 的通断周期,可以调整负载侧输出电流和电压的大小。

假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为1I ,同时C 的电压向负载供电,因C 值很大,输出电压0u 为恒值,记为0U 。

设V 通的时间为on t ,此阶段L 上积蓄的能量为E 1I on t 。

V 断时,E 和L 共同向C 充电并向负载R 供电。

设V 断的时间为off t ,则此期间电感L 释放能量为:off t 10E)I -(U (1-1)稳态时,一个周期T 中L 积蓄能量与释放能量相等off on t I E U t 101)(EI -= (1-2)化简得:E t T E t t offoff offon =+=t U 0 (1-3) 上式中1t T off ≥,输出电压高于电源电压,故称升压斩波电路。

off t T ——升压比,调节其即可改变0U 。

将升压比的倒数记作β,即T offt =β。

和导通占空比,有如下关系: 1=+βα (1-4)因此,式(1-2)可表示为:E -11E 1U 0αβ== (1-5) 升压斩波电路之所以能使输出电压高于电源电压,关键有两个原因:一是L 储能之后具有使电压泵升的作用,二是电容C 可将输出电压保持住。

在以上分析中,认为V 处于通态期间因电容C 的作用使得输出电压Uo 不变,但实际上C 值不可能为无穷大,在此阶段其向负载放电,U 。

必然会有所下降,故实际输出电压会略低于理论所得结果,不过,在电容C 值足够大时,误差很小,基本可以忽略。

参数计算由直流斩波电路的原理可知E t T E t t offoff offon =+=t U 0 (1-6) 又输入电压为输入直流电压范围:24V~60V ,要求输出直流电压:340V 。

所以只要根据输入的电压控制全控晶闸管IGBT 关断的时间和开通的时间比就可,即升压比就可得到所需电压。

由计算得:173856≤≤β (1-7) 又因为要求输出功率P=100W, 0U =340VP R U 20= (1-8)1156(1-得: R=9)第2章直流升压斩波电路驱动电路设计升压电路所用全控型晶闸管IGBT是电压型驱动器件。

IGBT的栅射极之间有数千皮法左右的极间电容,为快速建立驱动电压,要求驱动电路具有较小的输出电阻使IGBT开通的栅射极间的驱动电压一般取15—20V。

同样,关断时施加一定幅值的负驱动电压(-5—-15V)有利于减小关断时间和关断损耗。

在栅极串入一只低值电阻可以减小寄生振荡。

IGBT的驱动多采用专用的混合驱动集成驱动器,本次采用M57962L驱动器。

如图2-2驱动电路图所示。

又由产品信息知M57962L驱动器内部具有退饱和和检测和保护环节,当发生过电流时能快速响应但慢速关断IGBT,并向外部电路发出故障信号。

u图2-1直流升压斩波驱动电路第3章直流升压斩波电路保护电路设计过电流保护电路电力电子电路运行不正常或者发生故障时,可能会发生过电流。

过电流分为过载和短路两种情况。

通常采用的保护措施有:快速熔断器、直流快速断路器和过电流继电器。

一般电力电子装置均同时采用集中过流保护措施,以提高保护的可靠性和合理性。

综合本次设计电路的特点,采用快速熔断器,即给晶闸管串联一个保险丝实施电流保护。

如图3-1电流保护电路所示。

图3-1直流升压斩波电路过流保护电路对于所选的保险丝,遵从t2I值小于晶闸管的允许t2I值。

过电压保护电路电力电子装置中可能发生的过电压分为外因过电压和内因过电压两类。

外因过电压主要来自雷击和系统中的操作过程等外部原因。

本设计主要用于室内,为了使用方便不考虑来自雷击的威胁。

操作过电压是由分闸、合闸的开关操作引起的过电压,电网侧的操作过电压会由供电变压器磁感应耦合,或由变压器绕组之间存在的分布电容静感应耦合过来。

内因过电压主要来自电力电子装置内部器件的开关过程,包括:换相过电压,关断过电压。

根据以上产生过电压的的各种原因,设计相应的保护电路。

如图2-4过压保护电路所示。

其中:图中是利用一个电阻加电容进行电压抑制,当电压过高时,保护电路中的电容会阻碍其电压的上升,从而使得电力电子器件IGBT管因电压的的过高厄尔损坏。

图3-2中的电阻可以是1KΩ左右的电阻,而电容的值可以为100μF左右,这样形成一个保护电路。

图3-2直流斩波电路过电压保护电路第4章 直流升压斩波电路总电路的设计如图4-1总电路设计图所示。

电路由升压电路,驱动模块、保护模块、缓冲电路组成。

图4-1直流升压斩波电路总电路由M57862L 芯片为核心构成的驱动电路,控制IGBT 的导通和关断时间,从而控制电路的升压比β,使其达到:173856≤≤β (4-1) 进而使输出电压达到目的值。

升压电路时整个电路的核心,由一个IGBT 和电容、电感值都很大的电容电感各一个。

R 为输出负载,电压由此输出。

因为输出功率是一定的100W ,从而R 为定值1156Ω。

其中保护电路包括过电压保护和过电流保护。

第5章 直流升压斩波电路仿真仿真模型的选择在本次的设计中,采用了Psim 软件作为仿真工具来进行电路的模拟。

首先画出电路的结构图如下所示:图5-1直流升压斩波电路仿真电路模拟图由上图中我们可以看到,在电路中,在IGBT 的两端加了脉冲触发电压,控制开关的关断,以便得到升压的电压。

仿真结果及分析在仿真过程中,我将取输入的直流电压为U d =24~60V 之间的任意值,将电感值取的尽可能的大,即L=500H ,电阻值R=1000K ,控制脉冲电压U GE 的占空比大小,即从示波器上观察输出电压U o 大小,示波器上红线表示输出直流电压,蓝线表示输入电压,而橙色表示输出电流大小。

(1) 当占空比为α=,U d =24V 是,得到输出直流电压U o =。

图5-1直流电压输出波形1(2) 当占空比为α=,U d =35V 是,得到输出直流电压U o =。

图5-2直流电压输出波形2(3) 当占空比为α=,U d =45V 是,得到输出直流电压U o =。

图5-3直流电压输出波形3从上面的直流输出电压图中我们可以看出来,本次设计是成功的,理论与实际是相符的,我们得到了340V 的输出电压。

相关主题