当前位置:文档之家› 带电粒子在电场中的运动的综合问题

带电粒子在电场中的运动的综合问题

专题强化八带电粒子(带电体)在电场中运动的综合问题专题解读 1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合运用,高考常以计算题出现.2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析特别是曲线运动(平抛运动、圆周运动)的方法与技巧,熟练应用能量观点解题.3.用到的知识:受力分析、运动分析、能量观点.一、带电粒子在电场中运动1.分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的力学规律如牛顿运动定律、运动学公式、动能定理、能量守恒定律解题.2.受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略.一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用.二、用能量观点处理带电体的运动对于受变力作用的带电体的运动,必须借助于能量观点来处理.即使都是恒力作用的问题,用能量观点处理也常常显得简洁.具体方法常有两种:1.用动能定理处理思维顺序一般为:(1)弄清研究对象,明确所研究的物理过程.(2)分析物体在所研究过程中的受力情况,弄清哪些力做功,做正功还是负功.(3)弄清所研究过程的始、末状态(主要指动能).(4)根据W=ΔE k列出方程求解.2.用包括电势能和内能在内的能量守恒定律处理列式的方法常有两种:(1)利用初、末状态的能量相等(即E1=E2)列方程.(2)利用某些能量的减少等于另一些能量的增加(即ΔE=ΔE′)列方程.3.两个结论(1)若带电粒子只在电场力作用下运动,其动能和电势能之和保持不变.(2)若带电粒子只在重力和电场力作用下运动,其机械能和电势能之和保持不变.命题点一 带电粒子在交变电场中的运动1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等. 2.常见的题目类型(1)粒子做单向直线运动(一般用牛顿运动定律求解). (2)粒子做往返运动(一般分段研究).(3)粒子做偏转运动(一般根据交变电场特点分段研究). 3.思维方法(1)注重全面分析(分析受力特点和运动规律):抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件. (2)从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系.(3)注意对称性和周期性变化关系的应用.例1 如图1(a)所示,两平行正对的金属板A 、B 间加有如图(b)所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上.则t 0可能属于的时间段是( )图1A.0<t 0<T4B.T 2<t 0<3T 4C.3T4<t 0<T D.T <t 0<9T 8答案 B解析 设粒子的速度方向、位移方向向右为正.依题意知,粒子的速度方向时而为正,时而为负,最终打在A 板上时位移为负,速度方向为负.分别作出t 0=0、T 4、T 2、3T4时粒子运动的v-t 图象,如图所示.由于v -t 图线与时间轴所围面积表示粒子通过的位移,则由图象知,0<t 0<T 4与3T 4<t 0<T 时粒子在一个周期内的总位移大于零,T 4<t 0<3T4时粒子在一个周期内的总位移小于零;t 0>T 时情况类似.因粒子最终打在A 板上,则要求粒子在每个周期内的总位移应小于零,对照各项可知B 正确.变式1 如图2所示,A 、B 两金属板平行放置,在t =0时将电子从A 板附近由静止释放(电子的重力忽略不计).分别在A 、B 两板间加上下列哪种电压时,有可能使电子到不了B 板( )图2答案 B变式2 (多选)(2015·山东理综·20)如图3甲所示,两水平金属板间距为d ,板间电场强度的变化规律如图乙所示.t =0时刻,质量为m 的带电微粒以初速度v 0沿中线射入两板间,0~T 3时间内微粒匀速运动,T 时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g .关于微粒在0~T 时间内运动的描述,正确的是( )图3A.末速度大小为2v 0B.末速度沿水平方向C.重力势能减少了12mgdD.克服电场力做功为mgd 答案 BC解析 因0~T 3时间内微粒匀速运动,故E 0q =mg ;在T 3~2T3时间内,粒子只受重力作用,做平抛运动,在t =2T 3时刻的竖直速度为v y 1=gT 3,水平速度为v 0;在2T3~T 时间内,由牛顿第二定律2E 0q -mg =ma ,解得a =g ,方向向上,则在t =T 时刻,v y 2=v y 1-g T3=0,粒子的竖直速度减小到零,水平速度为v 0,选项A 错误,B 正确;微粒的重力势能减小了ΔE p =mg ·d2=12mgd ,选项C 正确;从射入到射出,由动能定理可知,12mgd -W 电=0,可知克服电场力做功为12mgd ,选项D 错误;故选B 、C.命题点二 用“等效法”处理带电粒子在电场和重力场中的运动1.等效重力法将重力与电场力进行合成,如图4所示,则F 合为等效重力场中的“重力”,g ′=F 合m 为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的竖直向下方向.图42.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小(称为临界速度)的点.例2 如图5所示,半径为r 的绝缘光滑圆环固定在竖直平面内,环上套有一质量为m 、带电荷量为+q 的珠子,现在圆环平面内加一个匀强电场,使珠子由最高点A 从静止开始释放(AC、BD为圆环的两条互相垂直的直径),要使珠子沿圆弧经过B、C刚好能运动到D.(重力加速度为g)图5(1)求所加电场的场强最小值及所对应的场强的方向;(2)当所加电场的场强为最小值时,求珠子由A到达D的过程中速度最大时对环的作用力大小;(3)在(1)问电场中,要使珠子能完成完整的圆周运动,在A点至少应使它具有多大的初动能?答案见解析解析(1)根据题述,珠子运动到BC弧中点M时速度最大,作过M点的直径MN,设电场力与重力的合力为F,则其方向沿NM方向,分析珠子在M点的受力情况,由图可知,当F电垂直于F时,F电最小,最小值为:F电min=mg cos 45°=22mgF电min=qE min解得所加电场的场强最小值E min=2mg2q,方向沿∠AOB的角平分线方向指向左上方.(2)当所加电场的场强为最小值时,电场力与重力的合力为F=mg sin 45°=22mg把电场力与重力的合力看做是“等效重力”,对珠子由A运动到M的过程,由动能定理得F(r+22r)=12m v2-0在M点,由牛顿第二定律得:F N-F=m v2r联立解得F N=(322+1)mg由牛顿第三定律知,珠子对环的作用力大小为 F N ′=F N =(322+1)mg .(3)由题意可知,N 点为等效最高点,只要珠子能到达N 点,就能做完整的圆周运动,珠子在N 点速度为0时,所需初动能最小,此过程中,由动能定理得:-F (r -22r )=0-E k A 解得E k A =2-12mgr . 变式3 (2018·陕西西安质检)如图6所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h 的A 处由静止开始下滑,沿轨道ABC 运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的34,圆环半径为R ,斜面倾角为θ=60°,s BC =2R .若使小球在圆环内能做完整的圆周运动,h 至少为多少?(sin 37°=0.6,cos 37°=0.8)图6答案 7.7R解析 小球所受的重力和电场力都为恒力,故可将两力等效为一个力F ,如图所示.可知F =1.25mg ,方向与竖直方向成37°角.由图可知,小球做完整的圆周运动的临界点是D 点,设小球恰好能通过D 点,即到达D 点时圆环对小球的弹力恰好为零.由圆周运动知识得: F =m v D 2R ,即:1.25mg =m v D 2R小球由A 运动到D 点,由动能定理结合几何知识得:mg (h -R -R cos 37°)-34mg ·(h tan θ+2R +R sin 37°)=12m v D 2,联立解得h ≈7.7R .命题点三 电场中的力电综合问题1.力学规律(1)动力学规律:牛顿运动定律结合运动学公式.(2)能量规律:动能定理或能量守恒定律.2.电场规律(1)电场力的特点:F=Eq,正电荷受到的电场力与场强方向相同.(2)电场力做功的特点:W AB=FL AB cos θ=qU AB=E p A-E p B.3.多阶段运动在多阶段运动过程中,当物体所受外力突变时,物体由于惯性而速度不发生突变,故物体在前一阶段的末速度即为物体在后一阶段的初速度.对于多阶段运动过程中物体在各阶段中发生的位移之间的联系,可以通过作运动过程草图来获得.例3(2017·全国卷Ⅰ·25)真空中存在电场强度大小为E1的匀强电场,一带电油滴在该电场中竖直向上做匀速直线运动,速度大小为v0,在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变.持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点.重力加速度大小为g.(1)求油滴运动到B点时的速度;(2)求增大后的电场强度的大小;为保证后来的电场强度比原来的大,试给出相应的t1和v0应满足的条件.已知不存在电场时,油滴以初速度v0做竖直上抛运动的最大高度恰好等于B、A两点间距离的两倍.答案见解析解析(1)油滴带电性质不影响结果.设该油滴带正电,油滴质量和电荷量分别为m和q,油滴速度方向向上为正.油滴在电场强度大小为E1的匀强电场中做匀速直线运动,故匀强电场方向向上.在t=0时,电场强度突然从E1增加至E2,油滴做竖直向上的匀加速运动,加速度方向向上,大小a1满足qE2-mg=ma1 ①油滴在t1时刻的速度为v1=v0+a1t1 ②电场强度在t1时刻突然反向,之后油滴做匀变速直线运动,加速度方向向下,大小a2满足qE2+mg=ma2 ③油滴在t 2=2t 1时刻,即运动到B 点时的速度为 v 2=v 1-a 2t 1④由①②③④式得 v 2=v 0-2gt 1⑤(2)由题意,在t =0时刻前有 qE 1=mg⑥油滴从t =0到t 1时刻的位移为 x 1=v 0t 1+12a 1t 12⑦油滴在从t 1时刻到t 2=2t 1时刻的时间间隔内的位移为 x 2=v 1t 1-12a 2t 12⑧ 由题给条件有v 20=2g ×2h =4gh⑨式中h 是B 、A 两点之间的距离. 若B 点在A 点之上,依题意有 x 1+x 2=h⑩由①②③⑥⑦⑧⑨⑩式得 E 2=[2-2v 0gt 1+14(v 0gt 1)2]E 1⑪为使E 2>E 1,应有 2-2v 0gt 1+14(v 0gt 1)2>1⑫ 解得0<t 1<(1-32)v 0g⑬ 或t 1>(1+32)v 0g⑭条件⑬式和⑭式分别对应于v 2>0和v 2<0两种情形. 若B 在A 点之下,依题意有 x 2+x 1=-h⑮由①②③⑥⑦⑧⑨⑮式得E 2=[2-2v 0gt 1-14(v 0gt 1)2]E 1⑯为使E 2>E 1,应有 2-2v 0gt 1-14(v 0gt 1)2>1⑰ 解得t 1>(52+1)v 0g⑱另一解为负,不符合题意,舍去.变式4 (2017·全国卷Ⅱ·25)如图7所示,两水平面(虚线)之间的距离为H ,其间的区域存在方向水平向右的匀强电场.自该区域上方的A 点将质量均为m ,电荷量分别为q 和-q (q >0)的带电小球M 、N 先后以相同的初速度沿平行于电场的方向射出.小球在重力作用下进入电场区域,并从该区域的下边界离开.已知N 离开电场时的速度方向竖直向下;M 在电场中做直线运动,刚离开电场时的动能为N 刚离开电场时的动能的1.5倍.不计空气阻力,重力加速度大小为g .求:图7(1)M 与N 在电场中沿水平方向的位移之比; (2)A 点距电场上边界的高度; (3)该电场的电场强度大小. 答案 (1)3∶1 (2)13H (3)2mg2q解析 (1)设小球M 、N 在A 点水平射出时的初速度大小为v 0,则它们进入电场时的水平速度仍然为v 0.M 、N 在电场中运动的时间t 相等,电场力作用下产生的加速度沿水平方向,大小均为a ,在电场中沿水平方向的位移分别为s 1和s 2.由题给条件和运动学公式得 v 0-at =0① s 1=v 0t +12at 2② s 2=v 0t -12at 2③联立①②③式得 s 1s 2=3④(2)设A 点距电场上边界的高度为h ,小球下落h 时在竖直方向的分速度为v y ,由运动学公式 v y 2=2gh⑤ H =v y t +12gt 2⑥M 进入电场后做直线运动,由几何关系知v 0v y =s 1H⑦联立①②⑤⑥⑦式可得 h =13H⑧(3)设电场强度的大小为E ,小球M 进入电场后做直线运动,则 v 0v y =qE mg⑨设M 、N 离开电场时的动能分别为E k1、E k2,由动能定理得 E k1=12m (v 02+v y 2)+mgH +qEs 1⑩ E k2=12m (v 02+v y 2)+mgH -qEs 2⑪由已知条件 E k1=1.5E k2⑫联立④⑤⑦⑧⑨⑩⑪⑫式得 E =2mg2q⑬变式5 如图8所示,在E =103 V /m 的竖直匀强电场中,有一光滑半圆形绝缘轨道QPN 与一水平绝缘轨道MN 在N 点平滑相接,半圆形轨道平面与电场线平行,其半径R =40 cm ,N 为半圆形轨道最低点,P 为QN 圆弧的中点,一带负电q =10-4 C 的小滑块质量m =10 g ,与水平轨道间的动摩擦因数μ=0.15,位于N 点右侧1.5 m 的M 处,g 取10 m /s 2,求:图8(1)要使小滑块恰能运动到半圆形轨道的最高点Q,则小滑块应以多大的初速度v0向左运动?(2)这样运动的小滑块通过P点时对轨道的压力是多大?答案(1)7 m/s(2)0.6 N解析(1)设小滑块恰能到达Q点时速度为v,由牛顿第二定律得mg+qE=m v2R小滑块从开始运动至到达Q点过程中,由动能定理得-mg·2R-qE·2R-μ(mg+qE)x=12-12m v022m v联立解得:v0=7 m/s.(2)设小滑块到达P点时速度为v′,则从开始运动至到达P点过程中,由动能定理得-(mg+qE)R-μ(qE+mg)x=12-12m v022m v′又在P点时,由牛顿第二定律得F N=m v′2R代入数据,解得:F N=0.6 N由牛顿第三定律得,小滑块通过P点时对轨道的压力F N′=F N=0.6 N.1.(2017·河南中原名校第二次联考)如图1所示,在两平行金属板中央有一个静止的电子(不计重力),当两板间的电压分别如图2中甲、乙、丙、丁所示,电子在板间运动(假设不与板相碰),下列说法正确的是()图1图2A.电压是甲图时,在0~T 时间内,电子的电势能一直减少B.电压是乙图时,在0~T2时间内,电子的电势能先增加后减少C.电压是丙图时,电子在板间做往复运动D.电压是丁图时,电子在板间做往复运动 答案 D解析 若电压是甲图,0~T 时间内,电场力先向左后向右,则电子先向左做匀加速直线运动,后做匀减速直线运动,即电场力先做正功后做负功,电势能先减少后增加,故A 错误;电压是乙图时,在0~T2时间内,电子向右先加速后减速,即电场力先做正功后做负功,电势能先减少后增加,故B 错误;电压是丙图时,电子先向左做加速度先增大后减小的加速运动,过了T2做加速度先增大后减小的减速运动,到T 时速度减为0,之后重复前面的运动,故电子一直朝同一方向运动,C 错误;电压是丁图时,电子先向左加速,到T 4后向左减速,T2后向右加速,34T 后向右减速,T 时速度减为零,之后重复前面的运动,故电子做往复运动,D 正确.2.将如图3所示的交变电压加在平行板电容器A 、B 两板上,开始B 板电势比A 板电势高,这时有一个原来静止的电子正处在两板的中间,它在电场力作用下开始运动,设A 、B 两极板间的距离足够大,下列说法正确的是( )图3A.电子一直向着A 板运动B.电子一直向着B 板运动C.电子先向A板运动,然后返回向B板运动,之后在A、B两板间做周期性往复运动D.电子先向B板运动,然后返回向A板运动,之后在A、B两板间做周期性往复运动答案 D3.一匀强电场的电场强度E随时间t变化的图象如图4所示,在该匀强电场中,有一个带负电粒子于t=0时刻由静止释放,若带电粒子只受电场力作用,则下列说法中正确的是(假设带电粒子不与板相碰)()图4A.带电粒子只向一个方向运动B.0~2 s内,电场力做功等于0C.4 s末带电粒子回到原出发点D.2.5~4 s内,电场力做功等于0答案 D解析画出带电粒子速度v随时间t变化的图象如图所示,v-t图线与时间轴所围“面积”表示位移,可见带电粒子不是只向一个方向运动,4 s末带电粒子不能回到原出发点,A、C错误;2 s末速度不为0,可见0~2 s内电场力做的功不等于0,B错误;2.5 s末和4 s末,速度的大小、方向都相同,则2.5~4 s内,电场力做功等于0,所以D正确.4.如图5所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b.不计空气阻力,则下列说法正确的是()图5A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒答案 B解析由于小球在竖直平面内做匀速圆周运动,所以重力与电场力的合力为0,电场力方向竖直向上,小球带正电,A错,B对;从a→b,电场力做负功,电势能增大,C错;由于有电场力做功,机械能不守恒,D错.5.(多选)(2017·河北唐山一模)如图6所示,竖直平面内有A、B两点,两点的水平距离和竖直距离均为H,空间存在水平向右的匀强电场.一质量为m的带电小球从A点以水平速度v0抛出,经一段时间竖直向下通过B点.重力加速度为g,小球在由A到B的运动过程中,下列说法正确的是()图6A.小球带负电B.速度先增大后减小C.机械能一直减小D.任意一小段时间内,电势能的增加量总等于重力势能的减少量答案AC解析由题可知,小球在竖直方向做自由落体运动,在水平方向做匀减速运动,可知其所受电场力方向向左,与电场方向相反,则小球带负电,电场力一直对小球做负功,小球的电势能增加,机械能减小,A、C正确.小球受竖直向下的重力和水平向左的电场力,合力方向指向左下方,又初速度水平向右,末速度竖直向下,由力与速度夹角关系可知,合力对小球先做负功,后做正功,小球的速度先减小后增大,B 错误.任意一小段时间内,小球的动能、电势能和重力势能的和保持不变,则电势能的增加量不一定等于重力势能的减少量,D 错误. 6.(2017·河南郑州第一次联考)如图7甲所示,在y =0和y =2 m 之间有沿着x 轴方向的匀强电场,MN 为电场区域的上边界,在x 轴方向范围足够大.电场强度的变化如图乙所示,取x 轴正方向为电场正方向.现有一个带负电的粒子,粒子的比荷q m =1.0×10-2 C /kg ,在t =0时刻以速度v 0=5×102 m/s 从O 点沿y 轴正方向进入电场区域,不计粒子重力作用.求:图7(1)粒子通过电场区域的时间; (2)粒子离开电场的位置坐标;(3)粒子通过电场区域后沿x 轴方向的速度大小.答案 (1)4×10-3 s (2)(-2×10-5 m,2 m) (3)4×10-3 m/s解析 (1)因为粒子初速度方向垂直于匀强电场,在电场中做类平抛运动,所以粒子通过电场区域的时间t =yv 0=4×10-3 s.(2)粒子带负电,沿x 轴负方向先加速后减速,加速时的加速度大小a 1=E 1qm =4 m/s 2,减速时的加速度大小a 2=E 2q m =2 m/s 2,离开电场时,在x 轴方向上的位移大小x =12a 1(T 2)2+a 1(T 2)2-12a 2(T2)2=2×10-5 m ,因此粒子离开电场的位置坐标为(-2×10-5 m,2 m). (3)粒子通过电场区域后沿x 轴方向的速度大小为: v x =a 1T 2-a 2T2=4×10-3 m/s.7.(2018·江西宜春调研)如图8所示,O 、A 、B 、C 为一粗糙绝缘水平面上的四点,不计空气阻力,一电荷量为-Q 的点电荷固定在O 点,现有一质量为m 、电荷量为-q 的小金属块(可视为质点),从A 点由静止沿它们的连线向右运动,到B 点时速度最大,其大小为v m ,小金属块最后停止在C 点.已知小金属块与水平面间的动摩擦因数为μ,A 、B 间距离为L ,静电力常量为k ,则( )图8A.在点电荷-Q 形成的电场中,A 、B 两点间的电势差U AB =2μmgL +m v m 22qB.在小金属块由A 向C 运动的过程中,电势能先增大后减小C.OB 间的距离为kQqμmgD.从B 到C 的过程中,小金属块的动能全部转化为电势能 答案 C解析 小金属块从A 到B 过程,由动能定理得:-qU AB -μmgL =12m v m 2-0,得A 、B 两点间的电势差U AB =-2μmgL +m v m 22q ,故A 错误;小金属块由A 点向C 点运动的过程中,电场力一直做正功,电势能一直减小,故B 错误;由题意知,A 到B 过程,金属块做加速运动,B 到C 过程,金属块做减速运动,在B 点金属块所受的滑动摩擦力与库仑力平衡,则有μmg =k Qqr2,得r =kQqμmg,故C 正确;从B 到C 的过程中,小金属块的动能和减少的电势能全部转化为内能,故D 错误.8.如图9所示,匀强电场方向与水平线间夹角θ=30°,方向斜向右上方,电场强度为E ,质量为m 的小球带负电,以初速度v 0开始运动,初速度方向与电场方向一致.图9(1)若小球的带电荷量为q =mgE,为使小球能做匀速直线运动,应对小球施加的恒力F 1的大小和方向各如何? (2)若小球的带电荷量为q =2mgE,为使小球能做直线运动,应对小球施加的最小恒力F 2的大小和方向各如何?答案 (1)3mg 方向与水平线成60°角斜向右上方 (2)32mg 方向与水平线成60°角斜向左上方 解析 (1)如图甲所示,为使小球做匀速直线运动,必使其合外力为0,设对小球施加的力F 1与水平方向夹角为α,则F 1cos α=qE cos θ,F 1sin α=mg +qE sin θ 代入数据解得α=60°,F 1=3mg 即恒力F 1与水平线成60°角斜向右上方.(2)为使小球能做直线运动,则小球所受合力的方向必和运动方向在一条直线上,故要使力F 2和mg 的合力和电场力在一条直线上.如图乙,当F 2取最小值时,F 2垂直于F .故F 2=mg sin 60°=32mg ,方向与水平线成60°角斜向左上方. 9.如图10所示,光滑水平轨道与半径为R 的光滑竖直半圆轨道在B 点平滑连接,在过圆心O 的水平界面MN 的下方分布有水平向右的匀强电场,现有一质量为m 、电荷量为+q 的小球从水平轨道上A 点由静止释放,小球运动到C 点离开圆轨道后,经界面MN 上的P 点进入电场(P 点恰好在A 点的正上方,小球可视为质点,小球运动到C 点之前电荷量保持不变,经过C 点后电荷量立即变为零).已知A 、B 间距离为2R ,重力加速度为g ,在上述运动过程中,求:图10(1)电场强度E 的大小;(2)小球在圆轨道上运动时的最大速率; (3)小球对圆轨道的最大压力的大小.答案 (1)mgq(2)2(2+1)gR (3)(2+32)mg解析 (1)设小球过C 点时速度大小为v C ,小球从A 到C 由动能定理知 qE ·3R -mg ·2R =12m v C 2小球离开C 点后做平抛运动到P 点,有 R =12gt 22R =v C t联立解得E =mgq.(2)设小球运动到圆轨道D 点时速度最大,设最大速度为v ,此时OD 与竖直线OB 夹角设为α,小球从A 点运动到D 点的过程,根据动能定理知 qE (2R +R sin α)-mgR (1-cos α)=12m v 2即12m v 2=mgR (sin α+cos α+1) 根据数学知识可知,当α=45°时动能最大,由此可得 v =2(2+1)gR .(3)由(2)中知,由于小球在D 点时速度最大且电场力与重力的合力恰好背离半径方向,故小球在D 点时对圆轨道的压力最大,设此压力大小为F ,由牛顿第三定律可知小球在D 点受到的轨道的弹力大小也为F ,在D 点对小球进行受力分析,并建立如图所示坐标系,由牛顿第二定律知F -qE sin α-mg cos α=m v 2R解得F =(2+32)mg .。

相关主题