常规CIO、C15、C20、C25、C30混凝土配合比混凝土简称砼:是指由胶凝材料将集料胶结成整体工程符合材料的统称。
通常讲的混凝土一词是指用水泥作胶凝材料,砂、石作集料;与水(加或不加外加剂和掺合料)按一定比例配合,经搅拌、成型、养护而得的水泥混凝土,也称普通混凝土,它广泛应用于土木工程。
混凝土是当代最主要的土木工程材料之一。
它是由胶凝材料,颗粒状集料(也称为骨料),水,以及必要时加入的外加剂和掺合料按一定比例配制,经均匀搅拌,密实成型,养护施工中的混凝土硬化而成的一种人工石材。
混凝土具有原料丰富,价格低廉,生产工艺简单的特点,因而使其用量越来越大。
同时混凝土还具有抗压强度高,耐久性好,强度等级范围宽等特点。
这些特点使其使用范围十分广泛,不仅在各种土木工程中使用,就是造船业,机械工业,海洋的开发,地热工程等,混凝土也是重要的材料。
配合比设计:制备混凝土时,首先应根据工程对和易性、强度、耐久性等的要求,合理地选择原材料并确定其配合比例,以达到经济适用的目的。
混凝土配合比的设计通常按水灰比法则的要求进行。
材料用量的计算主要用假定容重法或绝对体积法。
混凝土种类:按照表现密度分为重混凝土,普通混凝土,轻质混凝土,表现密度分别为〉2500Kg/m3 1950v v 2500、v 1950Kg/m3混凝土配合比是指混凝土中各组成材料之间的比例关系。
混凝土配合比通常用每立方米混凝土中各种材料的质量来表示,或以各种材料用料量的比例表示(水泥的质量为1)。
设计混凝土配合比的基本要求:1、满足混凝土设计的强度等级。
2、满足施工要求的混凝土和易性。
3、满足混凝土使用要求的耐久性。
4、满足上述条件下做到节约水泥和降低混凝土成本。
从表面上看,混凝土配合比计算只是水泥、砂子、石子、水这四种组成材料的用量。
实质上是根据组成材料的情况,确定满足上述四项基本要求的三大参数:水灰比、单位用水量和砂率。
常规C10 C15 C20 C25 C30混凝土配合比混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k划分的。
立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%即有95%勺保证率。
混凝土的强度分为C7.5、C10 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 等十二个等级。
混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。
有两种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克, 水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成:C:S:G=1:2.3:4.2,W/C=0.6 。
常用等级C20水:175kg 水泥:343kg 砂:621kg 石子:1261kg配合比为:0.51:1:1.81:3.68C25水:175kg 水泥:398kg 砂:566kg 石子:1261kg配合比为:0.44:1:1.42:3.17C30水:175kg 水泥:461kg 砂:512kg 石子:1252kg配合比为:0.38:1:1.11:2.722混凝土强度及其标准值符号的改变在以标号表达混凝土强度分级的原有体系中,混凝土立方体抗压强度用“R'来表达。
根据有关标准规定,建筑材料强度统一由符号“ f”表达。
混凝土立方体抗压强度为“fcu ”。
其中,“ cu”是立方体的意思。
而立方体抗压强度标准值以“fcu,k ”表达,其中“ k”是标准值的意思,例如混凝土强度等级为C20时,fcu,k=20N/mm2(MPa,即立方体28d抗压强度标准值为20MPa 水工建筑物大体积混凝土普遍采用90d或180d龄期,故在C符号后加龄期下角标,如C9015, C9020指90d 龄期抗压强度标准值为15MPa 20MPa的水工混凝土强度等级,C18015则表示为180d 龄期抗压强度标准值为15MPa3计量单位的变化过去我国采用公制计量单位,混凝土强度的单位为kgf/cm2。
现按国务院已公布的有关法令,推行以国际单位制为基础的法定计量单位制,在该单位体系中,力的基本单位是N (牛顿),因此,强度的基本单位为1 N/m2,也可写作1Pa。
标号改为强度等级后,混凝土强度计量单位改以国际单位制表达。
由于N/m2( Pa),数值太小,一般以1N/mm2=106N/m2(MP作为混凝土强度的实际使用的计量单位,读作“牛顿每平方毫米”或“兆帕”。
混凝土配制强度计算混凝土配制强度应按下式计算:fcu,0>fcu, k+1.645 (T其中:(T―― ■昆凝土强度标准差(N/mm2 )。
取c =5.00( N/mm2 );fcu,0――混凝土配制强度(N/mm2 );fcu,k ----- 混凝土立方体抗压强度标准值(N/mm2 ),取fcu,k=20(N/mm2 );经过计算得:fcu,0=20+1.645X5.00=28.23 (N/mm2 )。
二、水灰比计算混凝土水灰比按下式计算:水灰比=(A*fcc ) / (fcu,o+A*B*fcc )其中:era, (T b――回归系数,由于粗骨料为碎石,根据规程查表取(T a=0.46,取cb =0.07;fee―― 水泥28d抗压强度实测值,取48.00 (N/mm2 );经过计算得:W/C=0.46X 48.00/ (28.23+0.46 >0.07 >48.00 )=0.74。
三、用水量计算每立方米混凝土用水量的确定,应符合下列规定:1 •干硬性和朔性混凝土用水量的确定:1 )水灰比在0.40〜0.80范围时,根据粗骨料的品种,粒径及施工要求的混凝土拌合物稠度,其用水量按下两表选取:2)水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量应通过试验确定。
2 •流动性和大流动性混凝土的用水量宜按下列步骤计算:1 )按上表中坍落度90mm的用水量为基础,按坍落度每增大20mm用水量增加5kg,计算出未掺外加剂时的混凝土的用水量;2 )掺外加剂时的混凝土用水量可按下式计算:其中:mwa ------ 掺外加剂混凝土每立方米混凝土用水量(kg);mw0 ----- 未掺外加剂时的混凝土的用水量(kg );B ――卜加剂的减水率,取B =500%。
3)外加剂的减水率应经试验确定。
混凝土水灰比计算值mwa=0.57X (1-500)=0.703由于混凝土水灰比计算值=0.57,所以用水量取表中值=195kg。
四、水泥用量计算每立方米混凝土的水泥用量可按下式计算:经过计算,得mco=185.25/0.703=263.51kg。
五. 粗骨料和细骨料用量的计算合理砂率按下表的确定: 根据水灰比为0.703,粗骨料类型为:碎石,粗骨料粒径:20 (mm ),查上表, 取合理砂率B s=34.5%;粗骨料和细骨料用量的确定,采用体积法计算,计算公式如下:其中:mgo ------- 每立方米混凝土的基准粗骨料用量(kg);mso ------ 每立方米混凝土的基准细骨料用量(kg);p c泥密度(kg/m3),取3100.00 (kg/m3 );p g――骨料的表观密度(kg/m3 ),取2700.00 (kg/m3 );p s田骨料的表观密度(kg/m3 ),取2700.00 (kg/m3 );p w --- ■水密度(kg/m3),取1000 (kg/m3 );a ■昆凝土的含气量百分数,取a =1.00以上两式联立,解得mgo=1290.38 (kg ),mso=679.67 (kg )。
混凝土的基准配合比为:水泥:砂:石子:水=264 : 680 : 1290 : 185或重量比为:水泥:砂:石子:水=1.00 : 2.58 : 4.9 : 0.7。
变形:混凝土在荷载或温湿度作用下会产生变形,主要包括弹性变形、塑性变形、收缩和温度变形等。
混凝土在短期荷载作用下的弹性变形主要用弹性模量表示。
在长期荷载作用下,应力不变,应变持续增加的现象为徐变,应变不变,应力持续减少的现象为松弛。
由于水泥水化、水泥石的碳化和失水等原因产生的体积变形,称为收缩。
硬化混凝土的变形来自两方面:环境因素(温、湿度变化)和外加荷载因素,因此有:1).荷载作用下的变形 1.弹性变形 2.非弹性变形2).非荷载作用下的变形 1.收缩变形(干缩、自收缩) 2.膨胀变形(湿胀)3).复合作用下的变形 1.徐变耐久性在一般情况下,混凝土具有良好的耐久性。
但在寒冷地区,特别是在水位变化的工程部位以及在饱水状态下受到频繁的冻融交替作用时,混凝土易于损坏。
为此对混凝土要有一定的抗冻性要求。
用于不透水的工程时,要求混凝土具有良好的抗渗性和耐蚀性。
抗渗性、抗冻性、抗侵蚀性为混凝土耐久性。
组成材料与结构普通混凝土是由水泥、粗骨料(碎石或卵石)、细骨料(砂)、外加剂和水拌合,经硬化而成的一种人造石材。
砂、石在混凝土中起骨架作用,并抑制水泥的收缩;水泥和水形成水泥浆,包裹在粗细骨料表面并填充骨料间的空隙。
水泥浆体在硬化前起润滑作用,使混凝土拌合物具有良好工作性能,硬化后将骨料胶结在一起,形成坚强的整体。
主要技术性质混凝土的性质包括混凝土拌合物的和易性、混凝土强度、变形及耐久性等。
和易性又称工作性,是指混凝土拌合物在一定的施工条件下,便于各种施工工序的操作,以保证获得均匀密实的混凝土的性能。
和易性是一项综合技术指标,包括流动性(稠度)、粘聚性和保水性三个主要方面。
强度是混凝土硬化后的主要力学性能,反映混凝土抵抗荷载的量化能力。
混凝土强度包括抗压、抗拉、抗剪、抗弯、抗折及握裹强度。
其中以抗压强度最大,抗拉强度最小。
混凝土的变形包括非荷载作用下的变形和荷载作用下的变形。
非荷载作用下的变形有化学收缩、干湿变形及温度变形等。
水泥用量过多,在混凝土的内部易产生化学收缩而引起微细裂缝。
混凝土耐久性是指混凝土在实际使用条件下抵抗各种破坏因素作用,长期保持强度和外观完整性的能力。
包括混凝土的抗冻性、抗渗性、抗蚀性及抗碳化能力等。