当前位置:文档之家› 第5章信号的抽取与插值

第5章信号的抽取与插值

第5章信号的抽取与插值5.1前言至今,我们讨论的信号处理的各种理论、算法及实现这些算法的系统都是把抽样频率f视为恒定值,即在一个数字系统中只有一个抽样率。

但是,在实际工作中,我们经常会s遇到抽样率转换的问题。

一方面,要求一个数字系统能工作在“多抽样率(multirate)”状态,以适应不同抽样信号的需要;另一方面,对一个数字信号,要视对其处理的需要及其自身的特征,能在一个系统中以不同的抽样频率出现。

例如:1. 一个数字传输系统,即可传输一般的语音信号,也可传输播视频信号,这些信号的频率成份相差甚远,因此,相应的抽样频率也相差甚远。

因此,该系统应具有传输多种抽样率信号的能力,并自动地完成抽样率的转换;2. 如在音频世界,就存在着多种抽样频率。

得到立体声声音信号(Studio work)所用的抽样频率是48kHz,CD产品用的抽样率是44.1kHz,而数字音频广播用的是32kHz[15]。

3. 当需要将数字信号在两个具有独立时钟的数字系统之间传递时,则要求该数字信号的抽样率要能根据时钟的不同而转换;4.对信号(如语音,图象)作谱分析或编码时,可用具有不同频带的低通、带通及高通滤波器对该信号作“子带”分解,对分解后的信号再作抽样率转换及特征提取,以实现最大限度减少数据量,也即数据压缩的目的;5. 对一个信号抽样时,若抽样率过高,必然会造成数据的冗余,这时,希望能在该数字信号的基础上将抽样率减下来。

以上几个方面都是希望能对抽样率进行转换,或要求数字系统能工作在多抽样率状态。

近20年来,建立在抽样率转换理论及其系统实现基础上的“多抽样率数字信号处理”已成为现代信号处理的重要内容。

“多抽样率数字信号处理”的核心内容是信号抽样率的转换及滤波器组。

减少抽样率以去掉过多数据的过程称为信号的“抽取(decimatim)”,增加抽样率以增加数据的过程称为信号的“插值(interpolation)。

抽取、插值及其二者相结合的使用便可实现信号抽样率的转换。

滤波器组,因名思义,它是一组滤波器,它用以实现对信号频率分量的分解,然后根据需要对其各个“子带”信号进行多种多样的处理(如编码)或传输,在另一端再用一组滤波器将处理后的“子带”信号相综合。

前者称为分析滤波器组,后者称为综合滤波器组。

我们将在本章详细讨论抽样率转换的方法,在第6、第7及第8三章讨论滤波器组问题。

5.2信号的抽取设nTs t t x n x ==|)()(,欲使s f 减少M 倍,最简单的方法是将)(n x 中每M 个点中抽取一个,依次组成一个新的序列)(n y ,即)()(Mn x n y = n =-∞~+∞ (5.2.1)现在我们证明,)(n y 和)(n x 的DTFT 有如下关系:∑-=-=10/)2()(1)(M k Mk j j eX Me Y πωω(5.2.2)证明: 由(5.2.1)式,)(n y 的z 变换为∑∑∞-∞=∞-∞=--==n n nnzMn x zn y z Y )()()( (5.2.3)为了导出)(z Y 和)(z X 之间的关系,我们定义一个中间序列)(1n x :⎩⎨⎧=0)()(1n x n x 其它,,2,,0ΛM M n ±±= (5.2.4) 注意,)(1n x 的抽样率仍示s f ,而)(n y 的抽样率是M f s /。

)(n x 、)(1n x 及)(n y 如图5.2.1(a ),(b )和(c )所示,抽取的框图如图(d )所示。

图中符号M 倍抽取。

由该图,显然 )()()(1Mn x Mn x n y ==,这样,有∑∑∞-∞=∞-∞=--==n n Mn nzn x zMn x z Y /11)()()( 即 )()(/11Mzx z Y =(5.2.5)现在的任务是要找到)(1z x 和)(z x 之间的关系。

令∑∞-∞=-=i Mi n n p )()(δ为一脉冲序列,它在M 的整数倍处的值为1,其余皆为零,其抽样频率也为s f 。

由1.8节的Possion 和公式及DFS 的理论,)(n p 又可表示为:∑-=-=101)(M k kn MWMn p , Mj M eW /2π-= (5.2.6)因为)()()(1n p n x n x =,所以:∑∑∞-∞=∞-∞=--==n n n k MnzWn x Mzn p n x z X ))((1)()()(1即:∑-==101)(1)(M k k MzWX Mz X(5.2.7)将该式代入(5.2.5)式,有∑-==101)(1)(M k k MW zX Mz Y(5.2.8)令ωj ez =代入此式,即得(5.2.2)式,证毕。

(5.2.8)式又常写成如下形式∑-==10)(1)(M k k MMzWX Mz Y(5.2.9)图5.2.1信号抽取示意图,M =3, 横坐标为抽样点数()a 原信号()x n ,1()()b x n ,()c 抽取后的信号()y n ,(d )抽取的框图(5.2.2)式的含意是,将信号)(n x 作M 倍的抽取后,所得信号)(n y 的频谱等于原信号)(n x 的频谱先作M 倍的扩展,再在ω轴上作k Mπ2(1,,2,1-=M k Λ)的移位后再迭加。

如图5.2.2的(a ),(b ),(c ),(d )及(e )所示。

图5.2.2 信号抽取后频谱的变化, 图中3M =由抽样定理,在由)(t x 抽样变成)(n x 时,若保证c s f f 2≥,那么抽样的结果不会发生频谱的混迭。

对)(n x 作M 倍抽取得到)(n y ,若保证由)(n y 重建出)(t x ,那么,)(ωj e Y 的一个周期(,M M ππ-)也应等于)(t x 的频谱)(Ωj X 。

这就要求抽样频率s f 必须满足c s Mf f 2≥。

图5.2.2正是这种情况。

图中()j X e ω的频谱限制在33ππ-:内,而又正好作M =3的抽取,因此)(ωj eY 中没有发生频谱的混迭,如图(e )所示。

但是,如果c s Mf f 2≥的条件不能得到满足,那么)(ωj e Y 中将发生混迭,因此也就无法重建出)(t x 。

如图5.2.3(a )所示,()j X e ω的频谱在2ωπ≥的范围内仍有值,因此,即使作M =2倍的抽取,也必然发生混迭,如图(b )所示。

由于M 是可变的,所以很难要求在不同的M 下都能保证c s Mf f 2≥。

为此,防止抽取后在)(ωj e Y 中出现混迭的方法是在对)(n x 抽取前先作低通滤波,压缩其频带,如图(c )所示。

令)(n h 为一理想低通滤波器,即⎩⎨⎧=01)(ωj e H其它M πω2||≤ (5.2.10)如图(d )所示,令滤波后的输出为)(n υ,则∑∞-∞=-=k k n x k h n )()()(υ令对)(n υ抽取后的序列为)(n y ,则∑∞-∞=-==k k Mn x k h Mn n y )()()()(υ∑∞-∞=-=k k Mn h k x )()( (5.2.11)由前面的推导不难得出:∑-==1011)()(1)(M k kM Mk M MW zH W zX Mz Y(5.2.12a)及∑-=--=10)2()2()()(1)(M k Mk j Mk j j eH eX Me Y πωπωω(5.2.12b))(n υ的频谱()j V e ω如图(e )所示,)(ωj e Y 如图(f )所示。

由该图可以看出,加上频带为(M M ππ,-)的低通滤波器后,可以避免抽取后频谱的混迭。

因此,在对信号抽取时,抽取前的低通滤波一般是不可缺少的。

在图5.2.3(f )中使用了变量“y ω”,现对此稍作解释。

在一个多抽样率系统中,不同位置处的信号往往工作在不同的抽样频率下,因此,标注该信号频率的变量“ω” 也就具有不同的含义。

例如,在图5.2.1(d )中,若令相对)(ωj e Y 的圆周频率为y ω,相对对()j X e ω的圆周频率为x ω,则y ω和x ω有如下关系:22()2y y s s x f f f f M Mf f M ωπππω==== (5.2.13)若要求y ωπ≤,则必须有x M ωπ≤,这正是(5.2.10)式对()j H e ω频带所提要求的原因。

同时使用y ω和x ω两个变量固然能指出抽取前后信号频率的内涵,但使用起来非常不方便。

故在本书中,除非特别说明,在抽取前后及下一节要讨论的插值前后,信号的圆周频率统一用ω表示之。

只要搞清了抽取和插值前后的频率关系,一般是不会混淆的。

图5.2.3先滤波再抽取后的频谱的变化,图中M =2(a )()j X e ω,(b )没滤波就抽取得到的()j Y e ω,(c ) 信号抽取框图,(d ))(ωj e H ,(e ))(ωj eV ,(d )滤波后再抽取得到的)(ωj e Y5.3信号的插值如果希望将)(n x 的抽样频率s f 增加L 倍,即变成s Lf ,那么,最简单的方法是将)(n x 每两个点之间补L -1个零。

设补零后的信号为)(n υ,则⎩⎨⎧=0)()(L n x n υ其它Λ,2,,0L L n ±±=(5.3.1)如图5.3.1(a )和(b )所示。

图5.3.1信号的插值(a )原信号)(n x ,(b )插入1-L 个零后的)(n υ,3=L 。

现在来分析)(n x 、)(n υ各自DTFT 之间的关系。

由于∑∑∞-∞=∞-∞=--==n n nj nj eL n x en e V j ωωυω)()()(∑∞-∞=-=k kLj ek x ω)(即)()(L j j e X e V ωω=(5.3.2) 同理)()(L z X z V =(5.3.3)式中,)(ωj e V 和)(ωj e X 都是周期的,)(ωj e X 的周期是π2,但)(L j e X ω的周期是Lπ2。

这样,)(ωj e V 的周期也是L π2。

(5.3.2)式的含意是:在ππ~-的范围内,)(ωj e X 的带宽被压缩了L 倍,因此,)(ωj e V 在ππ~-内包含了L 个)(ωj e X 的压缩样本,如图5.3.2所示。

图5.3.2 插值后对频域的影响,2=L (a )插值前的频谱,(b )插值后的频谱由该图可以看出,插值以后,在原来的一个周期(ππ~-)内,)(ωj e V 出现了L 个周期,多余的L -1个周期称为)(ωj eX 的映像,我们应当设法去除这些映像。

实际上,图5.3.1用塞进零的方法实现插值是毫无意义的,因为补零不可能增加信息。

自然,我们需要用)(n x 中的点对这些为零的点作出插值。

实现插值的方法是用)(n υ和一低通滤波器作卷积。

相关主题