当前位置:文档之家› 备战高考物理电磁感应现象的两类情况-经典压轴题及答案

备战高考物理电磁感应现象的两类情况-经典压轴题及答案

备战高考物理电磁感应现象的两类情况-经典压轴题及答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小;(2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J .【解析】【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒 012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL x q r r ∆Φ∆== 解得 1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台);(2)至少共经多长时间EF 杆能离开平台。

【答案】(1)5C ;(2)4s【解析】【分析】【详解】解:(1)t=2s 内MN 杆上升的距离为21 2h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为BLh ∆Φ=产生的平均感应电动势为E t∆Φ=产生的平均电流为E I R=流过MN 杆的电量 q It =代入数据解得25C 2BLat q R== (2)EF 杆刚要离开平台时有BIL Mg =此时回路中的电流为E I R=MN 杆切割磁场产生的电动势为 E BLv =MN 杆运动的时间为v t a=代入数据解得 224s MgR t B L a==3.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度0.8m L =,质量0.2kg M =,框架电阻不计。

边界相距 1.2m d =的两个范围足够大的磁场I 、Ⅱ,方向相反且均垂直于金属框架,磁感应强度均为0.5T B =。

导体棒ab 垂直放置在框架上,且可以无摩擦的滑动。

现让棒从MN 上方相距0.5m x =处由静止开始沿框架下滑,当棒运动到磁场边界MN 处时,框架与斜面间摩擦力刚好达到最大值3N m f =(此时框架恰能保持静止)。

已知棒与导轨始终垂直并良好接触,棒的电阻0.16R =Ω,质量0.4kg m =,重力加速度210m/s g =,试求:(1)棒由静止开始沿框架下滑到磁场边界MN 处的过程中,流过棒的电量q ;(2)棒运动到磁场Ⅰ、Ⅱ的边界MN 和PQ 时,棒的速度1v 和2v 的大小;(3)通过计算分析:棒在经过磁场边界MN 以后的运动过程中,U 型金属框架能否始终保持静止状态?【答案】(1) 1.25C q =;(2)12m/s v =,24m/s v =;(3)框架能够始终保持静止状态【解析】【分析】本题考查导体棒在磁场中的运动,属于综合题。

【详解】(1)平均电动势为BLx E t t∆Φ==∆∆ 平均电流 E I R =则流过棒的电量为BLx q I t R=∆=代入数据解得 1.25C q =。

(2)棒向下加速运动时,U 形框所受安培力沿斜面向下,静摩擦力向上,当棒运动到磁场边界MN 处时,框架与斜面间摩擦力刚好达到最大值3N m f =,由平衡条件,有221sin m B L v Mg f Rθ+= 解得12m/s v =。

棒经过MN 后做匀加速直线运动,加速度3sin 5m/s a g θ==由22212v v ad -=,解得 24m/s v =(3)棒在两边界之间运动时,框架所受摩擦力大小为1sin 1N m f Mg f θ==<方向沿斜面向上棒进入PQ 时,框架受到的安培力沿斜面向上,所受摩擦力大小为2222sin 3N m B L v f Mg f Rθ=-==向沿斜面向下以后,棒做加速度减小的减速运动,最后做匀速运动。

匀速运动时,框架所受安培力为22sin 2N B L v F mg Rθ===安 方向沿斜面向上。

摩擦力大小为223sin 1N m B L v f Mg f Rθ=-=< 方向沿斜面向下。

综上可知,框架能够始终保持静止状态。

4.如图所示,CDE 和MNP 为两根足够长且弯折的平行金属导轨,CD 、MN 部分与水平面平行,DE 和NP 与水平面成30°,间距L =1m ,CDNM 面上有垂直导轨平面向下的匀强磁场,磁感应强度大小B 1=1T ,DEPN 面上有垂直于导轨平面向上的匀强磁场,磁感应强度大小B 2=2T 。

两根完全相同的导体棒a 、b ,质量均为m =0.1kg ,导体棒b 与导轨CD 、MN 间的动摩擦因数均为μ=0.2,导体棒a 与导轨DE 、NP 之间光滑。

导体棒a 、b 的电阻均为R =1Ω。

开始时,a 、b 棒均静止在导轨上除导体棒外其余电阻不计,滑动摩擦力和最大静摩擦力大小相等,运动过程中a 、b 棒始终不脱离导轨,g 取10m/s 2.(1)b 棒开始朝哪个方向滑动,此时a 棒的速度大小;(2)若经过时间t =1s ,b 棒开始滑动,则此过程中,a 棒发生的位移多大;(3)若将CDNM 面上的磁场改成竖直向上,大小不变,经过足够长的时间,b 棒做什么运动,如果是匀速运动,求出匀速运动的速度大小,如果是匀加速运动,求出加速度大小。

【答案】(1)0.2m/s ;(2)0.24m ;(3)匀加速,0.4m/s 2。

【解析】【分析】【详解】(1)开始时,a 棒向下运动,b 棒受到向左的安培力,所以b 棒开始向左运动,当b 棒开始运动时有1B IL mg μ=对a 棒2=2B Lv I R联立解得21220.2m/s mg R v B B L μ⋅==(2)由动量定理得对a 棒 2sin mgt B ILt mv θ-=其中222B Lx It R R∆Φ== 联立解得 222(sin )20.24mgt mv R x m B Lθ-⋅== (3)设a 棒的加速度为a 1,b 棒的加速度为a 2,则有21sin mg B IL ma θ-=12-B IL mg ma μ=且21122B Lv B Lv I R-=当稳定后,I 保持不变,则 211202B L v B L v I t R t∆-∆∆==∆⋅∆ 可得122a a =联立解得两棒最后做匀加速运动,有a 1=0.2m/s 2,a 2=0.4m/s 25.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。

在电磁感应现象中,感应电动势分为动生电动势和感生电动势两种。

产生感应电动势的那部分导体就相当于“电源”,在“电源”内部非静电力做功将其它形式的能转化为电能。

(1)如图1所示,固定于水平面的U 形金属框架处于竖直向下的匀强磁场中,磁感应强度为B ,金属框两平行导轨间距为l 。

金属棒MN 在外力的作用下,沿框架以速度v 向右做匀速直线运动,运动过程中金属棒始终垂直于两平行导轨并接触良好。

已知电子的电荷量为e 。

请根据电动势定义,推导金属棒MN 切割磁感线产生的感应电动势E 1;(2)英国物理学家麦克斯韦认为,变化的磁场会在空间激发感生电场,感生电场与静电场不同,如图2所示它的电场线是一系列同心圆,单个圆上的电场强度大小处处相等,我们把这样的电场称为涡旋电场。

在涡旋电场中电场力做功与路径有关,正因为如此,它是一种非静电力。

如图3所示在某均匀变化的磁场中,将一个半径为x 的金属圆环置于半径为r 的圆形磁场区域,使金属圆环与磁场边界是相同圆心的同心圆,从圆环的两端点a 、b 引出两根导线,与阻值为R 的电阻和内阻不计的电流表串接起来,金属圆环的电阻为2R ,圆环两端点a 、b 间的距离可忽略不计,除金属圆环外其他部分均在磁场外。

已知电子的电荷量为e ,若磁感应强度B 随时间t 的变化关系为B =B 0+kt (k >0且为常量)。

a .若x <r ,求金属圆环上a 、b 两点的电势差U ab ;b .若x 与r 大小关系未知,推导金属圆环中自由电子受到的感生电场力2F 与x 的函数关系式,并在图4中定性画出F 2-x 图像。

【答案】(1)见解析(2)a. 2ab 2k πU =3x ; b.22 F =2ker x;图像见解析 【解析】【分析】【详解】(1)金属棒MN 向右切割磁感线时,棒中的电子受到沿棒向下的洛仑兹力,是这个力充当了非静电力。

非静电力的大小1F Bev =从N 到M 非静电力做功为=W Bevl 非由电动势定义可得1W E Blv q==非 (2)a.由01B B kt =+可得 B k t∆=∆ 根据法拉第电磁感应定律2B S E kS t t∆Φ∆⋅===∆∆ 因为x r <,所以 2=πS x根据闭合电路欧姆定律得2/2E I R R =+ ab U I R =⋅联立解得22π=3ab k x U b.在很短的时间内电子的位移为s ∆,非静电力对电子做的功为2F s ∆电子沿着金属圆环运动一周,非静电力做的功222πW F s F x ∆=∑=非根据电动势定义2W E e=非 当x r <时,联立解得 22kex F =当x r >时,磁通量有效面积为2S r π=联立解得22ker 2F x= 由自由电子受到的感生电场力2F 与x 的函数关系式可得F 2-x 图像6.如图所示,竖直向上的匀强磁场垂直于水平面内的导轨,磁感应强度大小为B ,质量为M 的导体棒PQ 垂直放在间距为l 的平行导轨上,通过轻绳跨过定滑轮与质量为m 的物块A 连接。

相关主题