一、法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。
当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。
重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆ 根据闭合回路的欧姆定律得到:()E I R r =+解得:()B mgd R r t NqRS∆+=∆3.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =xt ∆∆=7 m/s 根据欧姆定律可得:I =BLvr R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得:I =()R r t∆Φ+∆ 磁通量变化量ΔΦ=S t∆∆B 解得:q =0.67 C(3)根据能量守恒有:Q =mgx -12mv 2 解得:Q =0.455 J所以Q R =Rr R+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J4.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L =1m ,导轨平面与水平面成θ=30︒角,上端连接 1.5R =Ω的电阻.质量为m =0.2kg 、阻值0.5r =Ω的金属棒ab 放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d =4m ,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.(1)若磁感应强度B=0.5T ,将金属棒释放,求金属棒匀速下滑时电阻R 两端的电压; (2)若磁感应强度的大小与时间成正比,在外力作用下ab 棒保持静止,当t =2s 时外力恰好为零.求ab 棒的热功率;(3)若磁感应强度随时间变化的规律是()0.05cos100B t T π=,在平行于导轨平面的外力F 作用下ab 棒保持静止,求此外力F 的最大值。
【答案】(1)3V (2)0.5W (3)(1)(1)44N F N ππ-≤≤+ 【解析】 【分析】本题考查的是导体棒切割磁感线的动力学问题,我们首先把导体棒的运动情况和受力情况分析清楚,然后结合相应规律即可求出相应参量。
【详解】(1)匀速时,导体棒收到的安培力等于重力的下滑分力,可得:EBL=mgsin θR+r,求出电动势为E=4V ,所以金属棒匀速下滑时电阻R 两端的电压U=3V (2)设磁感应强度随时间变化的规律为B=kt ,则电路中产生的电动势为ΔΦΔB E=n=S =kS Δt Δt ,安培力的大小为kSF =kt L R+r安,当t=2s 时,外力等于零,可得:kS2kL=mgsin θR+r,解出k=0.5T/s ,最后可得P=I 2R=0.5W 。
(3)根据法拉第电磁感应定律可得:ΔΦΔBE==S Δt Δt,根据F =BIL 安可得,E F =BLR+r 安,最后化简可得πF =-sin200πt(N)4安,所以外力F 的取值范围ππ1-N F 1+N 44≤≤()()【点睛】过程比较复杂的问题关键在于过程分析,对运动和受力进行分析。
5.如图所示,两根间距为L 的平行金属导轨,其cd 右侧水平,左侧为竖直的14画弧,圆弧半径为r ,导轨的电阻与摩擦不计,在导轨的顶端接有阻值为R 1的电阻,整个装置处在竖直向上的匀强磁场中。
现有一根阻值为R 2、质量为m 的金属杆,在水平拉力作用下,从图中位置ef 由静止开始做加速度为a 的匀加速直线运动,金属杆始终保持与导轨垂直且接触良好。
开始运动后,经时间t 1,金属杆运动到cd 时撤去拉力,此时理想电压表的示数为U ,此后全属杆恰好能到达圆弧最高处ab 。
重力加速度为g 。
求:(1)金属杆从ef 运动到cd 的过程中,拉力F 随时间t 变化的表达式; (2)金属杆从ef 运动到cd 的过程中,电阻R 1上通过的电荷量; (3)金属杆从cd 运动到ab 的过程中,电阻R1上产生的焦耳热。
【答案】(1)2122211()U R R t F ma R at +=+;(2)112Ut q R =;(3)2211121()2R Q ma h mgr R R =-+ 【解析】 【分析】利用法拉第电磁感应定律和电流公式联合求解。
根据能量守恒定律求出回路产生的总焦耳热,再求出R 1上产生的焦耳热。
【详解】(1) 金属杆运动到cd 时,由欧姆定律可得 11UI R = 由闭合电路的欧姆定律可得 E 1=I 1(R 1+R 2) 金属杆的速度 v 1=at 1由法拉第电磁感应定律可得 E 1=BLv 1解得:1211()U R R B R Lat +=;由开始运动经过时间t ,则 v=at 感应电流12BLvI R R =+金属杆受到的安培力 F 安 =BIL 由牛顿运动定律 F -F 安=ma可得2122211()U R R tF ma R at +=+;(2) 金属杆从 ef 运动到cd 过程中,位移2112x at = 电阻R 1上通过的电荷量:q I t =∆12EI R R =+E t∆Φ=∆ B S ∆Φ=∆ S xL ∆=联立解得:112Ut q R =; (3) 金属杆从cd 运动到ab 的过程中,由能量守恒定律可得212Q mv mgr =- 因此电阻R 1上产生的焦耳热为1112R Q Q R R =+ 可得2211121()2R Q ma h mgr R R =-+。
【点睛】此题为一道综合题,牵涉知识点较多,明确求电动势、安培力、焦耳热的方法是解题的关键,灵活利用法拉第电磁感应定律和能量守恒的结论是解题的捷径。
6.如图1所示,MN 和PQ 为竖直放置的两根足够长的光滑平行金属导轨,两导轨间距为l ,电阻均可忽略不计.在M 和P 之间接有阻值为R 的定值电阻,导体杆ab 质量为m 、电阻不计,并与导轨接触良好.整个装置处于磁感应强度为B 、方向垂直纸面向里的匀强磁场中.将导体杆ab 由静止释放.求:(1)a. 试定性说明ab 杆的运动;b. ab 杆下落稳定后,电阻R 上的热功率.(2)若将M 和P 之间的电阻R 改为接一电动势为E ,内阻为r 的直流电源,发现杆ab 由静止向上运动(始终未到达MP 处),如图2所示.a. 试定性说明ab 杆的运动:b. 杆稳定运动后,电源的输出功率.(3)若将M 和P 之间的电阻R 改为接一电容为C 的电容器,如图3所示.ab 杆由静止释放.请推导证明杆做匀加速直线运动,并求出杆的加速度.【答案】(1)加速度逐渐减小的变加速直线运动;P=2222m g RB l (2)加速度逐渐减小的加速;P=mgE Bl -2222m g r B l(3)a=22mgm B l C + 【解析】(1)a 、对ab 杆下滑过程,由牛顿第二定律22B l vmg ma R-=,可知随着速度的增大,加速度逐渐减小,当22B l vmg R=时,加速度为零,杆做匀速直线运动;故杆先做加速度逐渐减小的加速,再做匀速直线运动.b 、ab 杆稳定下滑时,做匀速直线运动:22B l vmg R=,可得22mgR v B l =故22222222B l v mgR m g RP v mg R B l B l =⋅=⋅=(2)a 、对ab 杆上滑过程,由牛顿第二定律:BIL mg ma -=,上滑的速度增大,感应电流与电源提供的电流方向相反,总电流逐渐减小,故加速度逐渐减小;同样加速度为零时杆向上匀速直线运动.B 、杆向上匀速时,BIl mg = mg I Bl=电源的输出功率2P EI I r =- 解得:2()Emg mg P r Bl Bl=- (3)设杆下滑经t ∆时间,由牛顿第二定律:mg BIl ma -=,电容器的充电电流QI t∆=∆ 电容器增加的电量为:Q C U CBL v ∆=∆=∆而va t∆=∆ 联立解得:mg B CBla l ma -⋅⋅=可知杆下滑过程给电容器充电的过程加速度恒定不变,故为匀加速直线运动. 解得:22mga m B l C=+【点睛】对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键.7.如图(1)所示,两足够长平行光滑的金属导轨MN 、PQ 相距为0.8m ,导轨平面与水平面夹角为α,导轨电阻不计.有一个匀强磁场垂直导轨平面斜向上,长为1m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨电接触良好,金属棒的质量为0.1kg 、与导轨接触端间电阻为1Ω.两金属导轨的上端连接右端电路,电路中R 2为一电阻箱.已知灯泡的电阻R L =4Ω,定值电阻R 1=2Ω,调节电阻箱使R 2=12Ω,重力加速度g=10m/s 2.将电键S 打开,金属棒由静止释放,1s 后闭合电键,如图(2)所示为金属棒的速度随时间变化的图象.求:(1)斜面倾角α及磁感应强度B 的大小;(2)若金属棒下滑距离为60m 时速度恰达到最大,求金属棒由静止开始下滑100m 的过程中,整个电路产生的电热;(3)改变电阻箱R 2的值,当R 2为何值时,金属棒匀速下滑时R 2消耗的功率最大;消耗的最大功率为多少?【答案】(1)斜面倾角α是30°,磁感应强度B 的大小是0.5T ;(2)若金属棒下滑距离为60m 时速度恰达到最大,金属棒由静止开始下滑100m 的过程中,整个电路产生的电热是32.42J ;(3)改变电阻箱R 2的值,当R 2为4Ω时,金属棒匀速下滑时R 2消耗的功率最大,消耗的最大功率为1.5625W . 【解析】 【分析】(1)电键S 打开,ab 棒做匀加速直线运动,由速度图象求出加速度,由牛顿第二定律求解斜面的倾角α.开关闭合后,导体棒最终做匀速直线运动,由F安=BIL,I=得到安培力表达式,由重力的分力mgsinα=F安,求出磁感应强度B.(2)金属棒由静止开始下滑100m的过程中,重力势能减小mgSsinα,转化为金属棒的动能和整个电路产生的电热,由能量守恒求解电热.(3)改变电阻箱R2的值后,由金属棒ab匀速运动,得到干路中电流表达式,推导出R2消耗的功率与R2的关系式,根据数学知识求解R2消耗的最大功率.【详解】(1)电键S打开,从图上得:a=gsinα==5m/s2得sinα=,则得α=30°金属棒匀速下滑时速度最大,此时棒所受的安培力F安=BIL又 I=,R总=R ab+R1+=(1+2+)Ω=6Ω从图上得:v m=18.75m/s由平衡条件得:mgsinα=F安,所以mgsinα=代入数据解得:B=0.5T;(2)由动能定理:mg•S•sinα﹣Q=mv m2﹣0由图知,v m=18.75m/s得Q=mg•S•sinα﹣mvm2=32.42J;(3)改变电阻箱R2的值后,金属棒匀速下滑时的速度为v m′,则有mgsinα=BI总LR2和灯泡并联电阻 R并′==()Ω,R2消耗的功率:P2==由上联立解得 P2=()2由数学知识得,当=R2,即R2=4Ω时,R2消耗的功率最大:最大功率为 P2m=()2()=W=1.5625W.8.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab 在水平向右的拉力F 作用下,以水平速度v 沿金属导轨向右做匀速直线运动,导体棒ab 始终与金属导轨形成闭合回路.已知导体棒ab 的长度恰好等于平行导轨间距l ,磁场的磁感应强度大小为B ,忽略摩擦阻力.(1)求导体棒ab 运动过程中产生的感应电动势E 和感应电流I ;(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒方向的洛伦兹力做功而产生的.如图乙(甲图中导体棒ab )所示,为了方便,可认为导体棒ab 中的自由电荷为正电荷,每个自由电荷的电荷量为q ,设导体棒ab 中总共有N 个自由电荷.a.求自由电荷沿导体棒定向移动的速率u ;b.请分别从宏观和微观两个角度,推导非静电力做功的功率等于拉力做功的功率. 【答案】(1) Blv F Bl(2) F NqB 宏观角度【解析】(1)根据法拉第电磁感应定律,感应电动势E Blv = 导体棒水平向右匀速运动,受力平衡,则有F BIl F ==安联立解得:FI Bl=(2)a 如图所示:每个自由电荷沿导体棒定向移动,都会受到水平向左的洛伦兹力1f quB = 所有自由电荷所受水平向左的洛伦兹力的合力宏观表现为安培力F 安 则有:1F Nf NquB F ===安 解得:F u NqB=B, 宏观角度:非静电力对导体棒ab 中所有自由电荷做功的功率等于感应电源的电功率,则有:P P EI Fv ===非电拉力做功的功率为:P Fv =拉因此P P =非拉, 即非静电力做功的功率等于拉力做功的功率; 微观角度:如图所示:对于一个自由电荷q ,非静电力为沿棒方向所受洛伦兹力2f qvB = 非静电力对导体棒ab 中所有自由电荷做功的功率2P Nf u 非= 将u 和2f 代入得非静电力做功的功率P Fv =非 拉力做功的功率P Fv =拉因此P P =非拉 即非静电力做功的功率等于拉力做功的功率.9.53.如图所示,竖直平面内有一半径为r 、内阻为R 1,粗细均匀的光滑半圆形金属环,在M 、N 处于相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻R2,已知R1=12R ,R2=4R .在MN 上方及CD 下方有水平方向的匀强磁场I 和II ,磁感应强度大小均为B .现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A 处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,且平行轨道中够长.已知导体棒ab 下落r/2时的速度大小为v 1,下落到MN 处的速度大小为v 2.(1)求导体棒ab 从A 下落r/2时的加速度大小.(2)若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁场I 和II 之间的距离h 和R2上的电功率P2.(3)若将磁场II 的CD 边界略微下移,导体棒ab 刚进入磁场II 时速度大小为v3,要使其在外力F 作用下做匀加速直线运动,加速度大小为a ,求所加外力F 随时间变化的关系式.【答案】(1) (2)【解析】试题分析:(1)以导体棒为研究对象,棒在磁场I中切割磁感线,棒中产生感应电动势,导体棒ab从A下落r/2时,导体棒在重力与安培力作用下做加速运动,由牛顿第二定律,得式中由各式可得到(2)当导体棒ab通过磁场II时,若安培力恰好等于重力,棒中电流大小始终不变,即式中解得导体棒从MN到CD做加速度为g的匀加速直线运动,有得此时导体棒重力的功率为根据能量守恒定律,此时导体棒重力的功率全部转化为电路中的电功率,即所以,(3)设导体棒ab进入磁场II后经过时间t的速度大小为,此时安培力大小为由于导体棒ab做匀加速直线运动,有根据牛顿第二定律,有即:由以上各式解得考点:电磁感应,牛顿第二定律,匀加速直线运动。