当前位置:文档之家› 1993考研数学一真题及答案解析

1993考研数学一真题及答案解析

1993年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.) (1)函数1()(2(0)xF x dt x =>⎰的单调减少区间为______________. (2) 由曲线223212,x y z ⎧+=⎨=⎩绕y轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为______________.(3) 设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin )2n n n a a nx b nx ∞=++∑,则其中系数3b 的值为______________. (4)设数量场u =则(grad )div u =______________.(5) 设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1n -,则线性方程组0Ax =的通解为______________.二、选择题(本题共5小题,每小题3分,满分15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.) (1) 设sin 20()sin()xf x t dt =⎰,34()g x x x =+则当0x →时,()f x 是()g x 的 ( )(A) 等价无穷小 (B) 同阶但非等价无穷小 (C) 高阶无穷小 (D) 低阶无穷小(2) 双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为 ( )(A) 402cos 2d πθθ⎰(B) 404cos 2d πθθ⎰(C) 2θ (D) 2401(cos 2)2d πθθ⎰(3) 设有直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为 ( ) (A)6π (B) 4π (C) 3π (D) 2π(4) 设曲线积分[()]sin ()cos xLf x e ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0f =,则()f x 等于 ( )(A) 2x x e e -- (B) 2x xe e --(C) 12x x e e -+- (D) 12x xe e -+- (5) 已知12324369Q t ⎛⎫ ⎪= ⎪ ⎪⎝⎭,P 为三阶非零矩阵,且满足0PQ =,则(A) 6t =时,P 的秩必为1 (B) 6t =时,P 的秩必为2(C) 6t ≠时,P 的秩必为1 (D) 6t ≠时,P 的秩必为2三、(本题共3小题,每小题5分,满分15分.) (1) 求 21lim(sincos )x x x x→∞+. (2) 求x. (3) 求微分方程22x y xy y '+=,满足初始条件1|1x y ==的特解.四、(本题满分6分)计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分.)(1) 设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,+)∞内有且仅有一个零点. (2) 设b a e >>,证明b aa b >.七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>,通过正交变换化成标准形22212325f y y y =++,求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中n m <,E 是n 阶单位矩阵,若AB E =,证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2v ,方向始终指向A ,试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分,把答案填在题中横线上.)(1) 一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为_______. (2) 设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =_______.十一、(本题满分6分)设随机变量X 的概率分布密度为||1()2x f x e -=,x -∞<<+∞. (1) 求X 的数学期望()E X 和方差()D X .(2) 求X 与||X 的协方差,并问X 与||X 是否不相关? (3) 问X 与||X 是否相互独立?为什么?1993年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】104x <≤【解析】由连续可导函数的导数与0的关系判别函数的单调性.将函数1()(2,xF x dt =⎰两边对x 求导,得()2F x '=-.若函数()F x 严格单调减少,则()20F x '=-<,12<.所以函数()F x 单调减少区间为104x <≤. 【相关知识点】函数的单调性:设函数()y f x =在[,]a b 上连续,在(,)a b 内可导.(1) 如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; (2) 如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少.(2)【解析】先写出旋转面S 的方程:2223()212x z y ++=. 令 222(,,)3()212F x y z x z y =++-. 则S 在点(,,)x y z 的法向量为{},,6,4,6F F F n x y z x y z ⎧⎫∂∂∂=±=±⎨⎬∂∂∂⎩⎭,所以在点处的法向量为{{2n =±=±. 因指向外侧,故应取正号,单位法向量为()0220,0,||0n n n ====. (3)【答案】23π【解析】按傅式系数的积分表达式 1()sin n b f x nxdx πππ-=⎰,所以 22311()sin 3sin 3sin 3b x x xdx x xdx x xdx πππππππππ---=+=+⎰⎰⎰.因为2sin 3x x 为奇函数,所以2sin 30x xdx ππ-=⎰;sin3x xdx 为偶函数,所以30sin 32sin 3b x xdx x xdx πππ-==⎰⎰01222(cos3)cos3cos3333x xd x x xdx πππ⎡⎤=-=-+⎢⎥⎣⎦⎰⎰022sin 323333x πππ⎡⎤=+=⎢⎥⎣⎦. (4)【答案】2221x y z ++【解析】先计算u 的梯度,再计算该梯度的散度. 因为 grad u u u u i j k x y z∂∂∂=++∂∂∂, 所以 222222(grad ),,u u u u u udiv u div x y z x yz ⎧⎫∂∂∂∂∂∂==++⎨⎬∂∂∂∂∂∂⎩⎭.数量场u =,,x y z 求偏导数,得222uxxx y z∂==∂++, 由对称性知222u y y x y z ∂=∂++, 222u zz x y z∂=∂++, 将,,u u ux y z∂∂∂∂∂∂分别对,,x y z 求偏导,得 2222222222222222()2()()u x y z x x y z x x x y z x y z ∂++-⋅+-==∂++++, 222222222()u z x y y x y z ∂+-=∂++, 222222222()u x y z z x y z ∂+-=∂++,因此, 2222222221(grad )u u u div u x y z x y z ∂∂∂=++=∂∂∂++.(5)【答案】(1,1,,1)T k【解析】因为()1r A n =-,由()1n r A -=知,齐次方程组的基础解系为一个向量,故0Ax =的通解形式为k η.下面根据已知条件“A 的各行元素之和均为零”来分析推导0Ax =的一个非零解,它就是0Ax =的基础解系.各行元素的和均为0,即111212122212000n n n n nn a a a a a a a a a ++=⎧⎪++=⎪⎨⎪⎪++=⎩,而齐次方程组0Ax =为111122121122221122000n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩. 两者比较,可知121n x x x ====是0Ax =的解.所以应填(1,1,,1)T k .二、选择题(本题共5小题,每小题3分,满分15分.)(1)【答案】(B) 【解析】0()lim()x f x g x →为“0”型的极限未定式,又分子分母在点0处导数都存在, 运用洛必达法则,有sin 222034232300000sin()()sin(sin )cos sin(sin )lim lim lim lim lim cos ()3434xx x x x x t dt f x x x x x g x x x x x x x →→→→→===⋅+++⎰洛2230sin(sin )lim 34x x x x →=+.因为当0x →,sin 0,x →所以222sin(sin )sin x x x ,所以222323000sin(sin )11lim lim lim 3434343x x x x x x x x x x →→→===+++,所以()f x 与()g x 是同阶但非等价的无穷小量.应选(B). 【相关知识点】无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (2)【答案】(A)【解析】由方程可以看出双纽线关于x 轴、y 轴对称,(如草图) 只需计算所围图形在第一象限部分的面积; 双纽线的直角坐标方程复杂,而极坐标方程 较为简单:2cos 2ρθ=.显然,在第一象限部分θ的变化范围是[0,]4πθ∈.再由对称性得2441001442cos 22S S d d ππρθθθ==⋅=⎰⎰,应选(A). (3)【答案】(C)【解析】这实质上是求两个向量的夹角问题,1L 与2L 的方向向量分别是12(1,2,1),110(1,1,2)021i j k l l =- =-=--,1L 与2L 的夹角ϕ的余弦为121212||31cos |cos(,)|2||||66l l l l l l ϕ⋅====,所以3πϕ=,应选(C).(4)【答案】(B)【解析】在所考察的单连通区域上,该曲线积分与路径无关⇔((())sin )(()cos )x f x e y f x y y x∂∂-=-∂∂, 即 (())cos ()cos xf x e y f x y '-=-,化简得 ()()xf x f x e '+=, 即 2()x x e f x e '⎡⎤=⎣⎦, 解之得 21()2xx e f x e C =+, 所以 21()()2x x f x e e C -=+. 由(0)0f = 得12C =-,因此 1()()2x xf x e e -=-,故应选(B).【相关知识点】曲线积分LPdx Qdy +⎰在单连通区域内与路径无关的充分必要条件是P Qy x∂∂=∂∂. (5)【答案】(C)【解析】若A 是m n ⨯矩阵,B 是n s ⨯矩阵,0AB =,则()()r A r B n +≤.当6t =时,矩阵的三行元素对应成比例,()1r Q =,有()()3r P r Q +≤,知()2r P ≤, 所以,()r P 可能是1,也有可能是2,所以(A)、(B)都不准确;当6t ≠时,矩阵的第一行和第三行元素对应成比例,()2r Q =,于是从()()3r P r Q +≤得()1r P ≤,又因0P ≠,有 ()1r P ≥,从而()1r P =必成立,所以应当选(C).三、(本题共3小题,每小题5分,满分15分.) (1)【解析】令1t x=,则当x →∞时,0t →, 1021lim(sin cos )lim(sin 2cos )xt x t t t x x→∞→+=+, 这是1∞型未定式,11sin 2cos 1sin 2cos 10lim(sin 2cos )lim(1sin 2cos 1)t t t t t tt t t t t t +-⋅+-→→+=++-,而1sin 2cos 1lim(1sin 2cos 1)t t t t t +-→++-是两个重要极限之一,即1sin 2cos 1lim(1sin 2cos 1)t t t t t e +-→++-=.所以 01sin 2cos 1sin 2cos 1limlim(sin 2cos )lim t t t t t t ttt t t t ee→+-+-→→+==.而 00sin 2cos 12cos 2sin lim lim 21t t t t t tt →→+--=洛,故 221lim(sin cos )x x e x x→∞+=.(2)【解析】方法一:222x==⎰.t =,则 222ln(1),1tdtx t dx t =+=+, 所以22222122(1)111tdt t t dt dt t t t =⋅==-+++⎰⎰⎰22arctan t t C C =-+=, 所以22x=2C =. 方法二t =,则 22221,ln(1),1xtdte t x t dx t =+=+=+, 所以2222(1)ln(1)22ln(1)1xt t t dt t dt t t ++=⋅=++⎰⎰222222ln(1)2ln(1)2ln(1)41t t t td t t t dt t =+-+=+-+⎰⎰. 关于221t dt t +⎰的求解同方法一,所以22ln(1)4(arctan )xt t t t C =+--+2C =. (3)【解析】解法一:所给方程为伯努利方程,两边除以2y 得2211x y y xy --'+=,即211()1x y xy --'-+=.令1yz -=,则方程化为21x z xz '-+=,即211z z x x'-=-, 即 31()z x x '=-, 积分得 212z x C x -=+.由1yz -=得2112x C xy -=+, 即 2212xy Cx=+, 代入初始条件1|1x y ==,得 12C =,所以所求方程的特解是221x y x =+. 解法二:所给方程可写成 2()y yy x x'=-的形式,此方程为齐次方程.令yu x=,则,y xu y u xu ''==+,所以方程可化为 2u xu u u '+=-,分离变量得(2)du dxu u x=-,积分得112ln ln ||2u x C u -=+, 即22u Cx u-=. 以yu x=代入上式,得22y x Cx y -=.代入初始条件1|1x y ==,得1C =-, 故特解为221xy x =+.四、(本题满分6分) 【解析】将I 表成I Pdydz Qdzdx Rdxdy ∑=++⎰⎰,则22P Q R z z z z x y z∂∂∂++=+-=∂∂∂. 又∑是封闭曲面,可直接用高斯公式计算.记∑围成区域Ω,见草图,∑取外侧,由高斯公式得P Q R I dV zdV x y z ΩΩ⎛⎫∂∂∂=++= ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰.用球坐标变换求这个三重积分.在球坐标变换下,Ω为:02,0,024πθπϕρ≤≤≤≤≤≤,于是2240cos sin I zdV d d d ππθϕϕρϕρΩ==⎰⎰⎰⎰⎰3402sin sin d d ππϕϕρ=⋅⎰42401112sin 212442πππϕρπ⎡⎤⎡=⋅⋅=⋅⋅=⎢⎥⎢⎥⎣⎦⎣⎦.五、(本题满分7分) 【解析】先将级数分解,2000(1)(1)(1)(1)1()222n n nn nn n n n n n n A ∞∞∞===--+--==+-∑∑∑. 第二个级数是几何级数,它的和已知112()1231()2n n ∞=-==--∑. 求第一个级数的和转化为幂级数求和.考察1(1)(||1)1n n n x x x∞=-=<+∑. 2()(1)(1)((1))nn n n n n S x n n xx ∞∞-==''=--=-∑∑312()1(1)x x ''==++, 所以 23(1)(1)11124()1222427(1)2n n n n n S ∞=--===+∑. 因此原级数的和 422227327A =+=.六、(本题共2小题,每小题5分,满分10分.)(1)【解析】证法一:由拉格朗日中值定理可知,在(0,)x 存在一点ξ,使得()(0)()(0)()f x f f x xf ξξ''-=-=,即 ()()(0)f x xf f ξ'=+.因为()0f k ξ'≥>,所以当x →+∞时,()xf ξ'→+∞,故()f x →+∞.由(0)0f <,所以在(0,)x 上由介值定理可知,必有一点(0,)x η∈使得()0f η=.又因为()0f k ξ'≥>,故()f x 为严格单调增函数,故η值唯一. 证法二:用牛顿-莱布尼兹公式,由于()(0)()(0)(0)x xf x f f t dt f kdt f kx '=+≥+=+⎰⎰,以下同方法1.(2)【解析】先将不等式做恒等变形:因为b a e >>,故原不等式等价于ln ln b a a b >或ln ln a ba b>. 证法一:令()ln ln ,()f x x a a x x a e =- >>,则 ()ln af x a x'=-.因为x a e >>,所以ln 1,1a a x ><,故()ln 0af x a x'=->.从而()f x 在x a e >>时为严格的单调递增函数,故 ()()0,()f x f a x a e >= >>. 由此 ()ln ln 0f b b a a b =->,即 baa b >. 证法二:令ln ()()x f x x e x =>,则 21ln ()xf x x -'=. 当(,)x e ∈+∞时,()0f x '<,所以()f x 为严格的单调递减函数,故存在b a e >>使得ln ln ()()b af b f a b a=<=成立.即baa b >.七、(本题满分8分)【解析】写出二次型f 的矩阵为2000303A a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,它的特征方程是22200||03(2)(69)003E A a a aλλλλλλλ--=--=--+-=--.f 经正交变换化成标准形22212325f y y y =++,那么标准形中平方项的系数1,2,5就是A 的特征值.把1λ=代入特性方程,得240a -=2a ⇒=±.因0a >知2a =.这时 200032023A ⎛⎫ ⎪= ⎪ ⎪⎝⎭.对于11λ=,由()0E A x -=, 100100022011022000-⎛⎫⎛⎫ ⎪ ⎪--→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,得 1(0,11)TX =-.对于22λ=,由(2)0E A x -=,000012012003021000⎛⎫⎛⎫ ⎪ ⎪--→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,得2(1,0,0)TX =.对于35λ=,由(5)0E A x -=,300300022011022000⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,得3(0,1,1)TX =.将123,,X X X 单位化,得1230101,0,1101γγγ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪===⎪ ⎪⎪⎪ ⎪⎪-⎭⎝⎭⎭. 故所用的正交变换矩阵为123010(,,)00P γγγ⎛⎫⎪ ⎪ ==⎝. 【相关知识点】二次型的定义:含有n 个变量12,,,n x x x 的二次齐次多项式(即每项都是二次的多项式)()1211,,,,n nn ij i j i j f x x x a x x ===∑∑ 其中ij ji a a =,称为n 元二次型.令()12,,,Tn x x x x =,()ij A a =,则二次型可用矩阵乘法表示为()12,,,,T n f x x x x Ax =其中A 是对称矩阵()TA A =,称A 为二次型()12,,,n f x x x 的矩阵.八、(本题满分6分)【解析】证法一:对B 按列分块,记12(,,)n B βββ=,若11220n n k k k βββ+++=,即 1212(,,,)0n n k k k βββ⎛⎫⎪ ⎪= ⎪⎪⎝⎭, 亦即 120n k k Bk ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭. 两边左乘A ,得 120n k k AB k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,即 120n k k E k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,亦即 120n k k k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.所以12,,n βββ线性无关.证法二:因为B 是m n ⨯矩阵,n m <,所以()r B n ≤. 又因()()()r B r AB r E n ≥==,故()r B n =.所以12,,n βββ线性无关.【相关知识点】1. 向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k ,使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.2. 矩阵乘积秩的结论:乘积的秩小于等于单个矩阵的秩九、(本题满分6分)【解析】如图,设当A 运动到(0,)Y 时,B 运动到(,)x y . 由B 的方向始终指向A ,有0dy y Ydx x -=-,即 .dyY y xdx=- (1) 又由dYv dt =,222()()dy dx v dt dt =+,得22()()2dy dx dY dt dt dt+=. 由题意,()x t 单调增,0dxdt>,所以 21()2dx dy dY dt dx dt +=.亦即2dY dx=. (2) 由(1),(2)消去Y ,dYdx,便得微分方程20xy ''=. 初始条件显然是(1)0,(1)1y y '-=-=.十、填空题(本题共2小题,每小题3分,满分6分,把答案填在题中横线上.) (1)【解析】可以用古典概型,也可以用抽签原理.方法一:从直观上看,第二次抽出次品的可能性与第一次抽到正品还是次品有关,所以考虑用全概率公式计算.设事件i B =“第i 次抽出次品”1,2,i =由已知得11210(),(),1212P B P B == 121212(|),(|)1111P B B P B B ==.应用全概率公式 1121212211021()()(|)()(|)121112116P B P B P B B P B P B B =+=⨯+⨯=. 方法二:对填空题和选择题可直接用抽签原理得到结果.由抽签原理(抽签与先后次序无关),不放回抽样中第二次抽得次品的概率与第一次抽得次品的概率相同,都是21126=. (2)【解析】方法一:可以用分布函数法,即先求出分布函数,再求导得到概率密度函数.由已知条件,X 在区间(0,2)上服从均匀分布,得X 的概率密度函数为1,02()20,X x F x ⎧ <<⎪=⎨⎪ ⎩其它. 先求F 的分布函数2()()()Y F y P Y y P X y =≤=≤.当0y ≤时,()0Y F y =;当4y ≥时,()1Y F y =;当04y <<时,{}{}{2()Y F y P Y y P X y P X =≤=≤=≤≤1()2X x dx dx dx ==+=⎰. 即0,0()04,1, 4.Y y F y y y ≤ ,⎧=<<⎪ ≥⎪⎩于是,对分布函数求导得密度函数04()()0,Y Yyf y F y<<'==⎩其他.故随机变量2Y X=在(0,4)内的概率分布密度()Yf y=方法二:也可以应用单调函数公式法.由于2y x=在(0,4)内单调,反函数()x h y=(0,2)内可导,且导数()h y'=恒不为零,因此,由连续型随机变量函数的密度公式,得到随机变量Y的概率密度为[]1,04,04, ()(),042()0,0,0,XYy yh y f h y yf y<< << '⎧ <<⎪===⎨⎪⎩⎩⎩其他其他,其他.故随机变量2Y X=在(0,4)内的概率分布密度()Yf y=十一、(本题满分6分)【解析】(1)第一问是常规问题,直接运用公式对其计算可得期望与方差.||()()02xxE X xf x dx e dx+∞+∞--∞-∞===⎰⎰.(因为被积函数||2xxe-是奇函数,积分区域关于y轴对称,所以积分值为0.)22||2||2()()211222xx xxD X x f x dx e dxx e dx x e dx+∞+∞--∞-∞+∞+∞---∞===⋅⎰⎰⎰⎰偶函数积分的性质220000222() 2.x x xx xxx e dx x e xe dxxe e dxe+∞+∞--+∞-+∞-+∞--+∞==-+=-=-=⎰⎰⎰(+)(2) 根据协方差的计算公式(,)(||)()(||)cov X Y E X X E X E X=-来计算协方差.因为||()()02xxE X xf x dx e dx+∞+∞--∞-∞===⎰⎰,所以||(,)(||)0(||)(||)1||()||0.2x Cov X Y E X X E X E X X x x f x dx x x e dx +∞+∞--∞-∞=-====⎰⎰(因为被积函数||||2x xx e -是奇函数,积分区域关于y 轴对称,所以积分值为0.) 所以X 与||X 不相关. (3) 方法一:对于任意正实数(0)a a <<+∞,事件{}||X a <含于事件{}X a <,且{}01P X a <<<,所以 {}{},||||P X a X a P X a <<=<,{}{}{}||||P X a P X a P X a <<<<, 可见 {}{}{},||||P X a X a P X a P X a <<≠<<, 因此X 与||X 不独立.方法二:因为11111111{1}()1112222x x x P X f x dx e dx e dx e e+∞---+∞-∞-∞≤===-=+=-⎰⎰⎰; 又1111011011{1}()12x x xP X f x dx e dx e dx e e-----≤====-=-⎰⎰⎰,显然有{,}{}{}{}P X X P X P X P X ≤≤=≤≠≤≤11111,因此X 与||X 不独立.Born to win。

相关主题