一,原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。
主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。
分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。
多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。
洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。
助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。
分析仪器的主要性能指标是准确度、检出限、精密度。
2.根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。
3.原子发射光谱仪由激发源、分光系统、检测系统三部分组成。
4.使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。
5.光谱及光谱法是如何分类的?⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。
原子光谱与发射光谱,吸收光谱与发射光谱有什么不同6.原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。
7.分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。
8.吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。
9.发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。
10.原子荧光。
三种类型:共振荧光、非共振荧光与敏化荧光。
11.原子发射光谱法可采用内标法来消除实验条件的影响12.朗伯比尔定律物理意义是:当一束平行单色光通过均匀的溶液时,溶液的吸光度A与溶液中的吸光物质的浓度C及液层厚度L的乘积成正比。
A=kcL偏离的原因是:1入射光并非完全意义上的单色光而是复合光。
2溶液的不均匀性,如部分入射光因为散射而损失。
3溶液中发生了如解离、缔合、配位等化学变化。
13.影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么?答:影响原子吸收谱线宽度的因素有自然宽度ΔfN、多普勒变宽和压力变宽。
其中最主要的是多普勒变宽和洛伦兹变宽。
14.原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。
原子化器的作用:将试样中的待测元素转化为气态的能吸收特征光的基态原子。
分光系统的作用:把待测元素的分析线与干扰线分开,使检测系统只能接收分析线。
检测系统的作用:把单色器分出的光信号转换为电信号,经放大器放大后以透射比或吸光度的形式显示出来。
15.与火焰原子化器相比,石墨炉原子化器有哪些优缺点?与火焰原子化器相比,石墨炉原子化器的优点有:原子化效率高,气相中基态原子浓度比火焰原子化器高数百倍,且基态原子在光路中的停留时间更长,因而灵敏度高得多。
缺点:操作条件不易控制,背景吸收较大,重现性、准确性均不如火焰原子化器,且设备复杂,费用较高16.原子吸收光谱法的干扰按其性质主要分为物理干扰、化学干扰、电离干扰和光谱干扰四类17.比较标准加入法与标准曲线法的优缺点。
答:标准曲线法的优点是大批量样品测定非常方便。
缺点是:对个别样品测定仍需配制标准系列,手续比较麻烦,特别是遇到组成复杂的样品测定,标准样的组成难以与其相近,基体效应差别较大,测定的准确度欠佳。
标准加入法的优点是可最大限度地消除基干扰,对成分复杂的少量样品测定和低含量成分分析,准确度较高;缺点是不能消除背景吸收,对批量样品测定手续太繁,不宜采用。
18.电子跃迁有哪几种类型?哪些类型的跃迁能在紫外及可见光区吸收光谱中反映出来?答:电子跃迁的类型有四种:б→б* ,n→б*,n→π*,π→π*。
其中n→б*,n→π*,π→π*的跃迁能在紫外及可见光谱中反映出来。
何谓发色团和助色团?举例说明。
答:发色团指含有不饱和键,能吸收紫外、可见光产生n→π*或π→π*跃迁的基团。
例如:>C=C<,—C≡C—,>C=O,—N=N—,—COOH等。
助色团:指含有未成键n 电子,本身不产生吸收峰,但与发色团相连能使发色团吸收峰向长波方向移动,吸收强度增强的杂原子基团。
例如:—NH2,—OH,—OR,—SR,—X等。
20.标准光谱比较定性法为什么选铁谱?1.谱线多:在210~660nm范围内有数千条谱线;(2)谱线间距离分配均匀:容易对比,适用面广;(3)定位准确:已准确测量了铁谱每一条谱线的波长。
光分析法的分类:原子发射光谱,原子吸收光谱,紫外可见光谱,红外光谱,核磁谱,分子荧光光谱,原子荧光光谱电化学分析法是根据物质在溶液中的电化学性质建立的一类分析方法。
以电讯号作为计量关系的一类方法,主要有四大类:电位法、电导法、电解法、极谱法及伏安法。
色谱法:色谱法是以物质在两相(流动相和固定相)中分配比的差异而进行分离和分析的方法。
主要有:气相色谱法和液相色谱法电磁辐射具有波动性和粒子性谱线的强度是原子发射光谱的定量分析依据。
26.与发射光谱分析相比,原子吸收光谱因谱线数少,可采用较宽的狭缝。
但当背景大时,可适当减小缝宽27.原子发射光谱分析法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。
28.原子发射光谱分析法的分类:根据仪器设备和检测手段不同:摄谱分析法、光电直读法、火焰光度法、原子荧光分析法29.原子发射光谱分析法的特点:(1)可多元素同时检测(2)分析速度快(3)选择性高(4)检出限较低(5)准确度较高(6)所需试样量少;(7) ICP-AES性能优越缺点:(1) 无法检测非金属元素:(2) 只能确定物质的元素组成与含量,不能给出物质分子及其结构的信息。
(3) 在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显著,所以对标准参比的组分要求较高。
(4)含量(浓度)较大时,准确度较差。
自吸:中心发射的辐射被边缘的同种基态原子吸收,使辐射强度降低的现象。
元素浓度低时,不出现自吸。
随浓度增加,自吸越严重,当达到一定值时,谱线中心完全吸收,如同出现两条线,这种现象称为自蚀。
32.采用ICP原理:当高频发生器接通电源后,高频电流I通过感应线圈产生交变磁场(绿色)。
特点:温度高,惰性气氛,原子化条件好,有利于难激发的或易氧化的元素,有很高的灵敏度和稳定性,式样消耗少;“趋肤效应”,(涡电流在外表面处密度大,使表面温度高,轴心温度低,中心通道进样对等离子的稳定性影响小)。
也有效消除自吸现象,线性范围宽;Ar气体产生的背景干扰小;无电极放电,无电极污染;缺点:对非金属测定的灵敏度低,仪器昂贵,操作费用高33.光谱定性分析定性依据:元素不同→电子结构不同→光谱不同→特征光谱34.分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线;35.最后线:或称持久线。
当待测物含量逐渐减小时,谱线数目亦相应减少,当 c 接近0 时所观察到的谱线,是理论上的灵敏线或第一共振线。
36.灵敏线:最易激发的能级所产生的谱线,每种元素都有一条或几条谱线最强的线,即灵敏线。
最后线也是最灵敏线;37.共振线:由第一激发态回到基态所产生的谱线;通常也是最灵敏线、最后线;38.定性分析的方法纯样光谱比较法和铁光谱比较法。
39.影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法40.极大(峰)值吸收法——以半宽比吸收线的半宽还要小得多的锐线光源来代替产生连续光谱的激发光源,测量谱线的峰值吸收41.紫外-可见吸收光谱法—利用紫外-可见分光光度计测量物质对紫外-可见光的吸收程度和紫外-可见吸收光谱来确定物质的组成、含量,推测物质结构的分析方法。
42,,适用范围:沸点在500度以下;在操作条件下,热稳定性良好的物质,原则上均可采取气相色谱法。
固定液的选择:根据相似相容原理气相色谱检测器类型浓度型:热导检测器、电子捕获器质量型:氢火焰离子化检测器、火焰光度检测器操作条件的选择:载气及其流速的选择;柱温的选择;载体和固定液含量的选择;进样条件的选择43.光电倍增管优点:高灵敏度;响应快;适于弱光测定,甚至对单一光子均可响应。
缺点:热发射强,因此暗电流大,需冷却(-30oC)。
不得置于强光(如日光)下,否则会永久损坏PMT。
硅二极管特点:灵敏度介于真空管和倍增管之间44.分析条件的选择A.仪器测量条件合适的吸光度范围(调节待测物浓度、选用适当厚度的吸收池等)。
入射光波长和狭缝宽度。
B.反应条件的选择显色剂用量;溶液酸度的选择;显色反应时间、温度等C.参比溶液的选择溶剂参比;试剂参比;试样参比;平行操作溶液参比D.干扰及消除方法控制酸度;掩蔽剂;选择适当分析波长;分离。
45.电位分析法定义:利用电极电位与浓度的关系测定物质含量的电化学分析法。
电位分析法分为直接电位法和电位滴定法。
电位分析法最显著特点是:仪器设备简单,操作简便,价格低廉。
现已广泛普及应用。
46.按原理命名,划分为五大类:(1)电导分析(2)电位分析3)库分析,(4)电解分析(5)伏安和极谱法47.利用电极电位和溶液中某种离子的活度或浓度之间的关系来测定待测物质活度或浓度的电化学分析法称为电位分析法。
以离子选择性电极做指示电极的电位分析,称为离子选择性电极分析法。
48.电化学中把电位随溶液中待测离子活度或浓度变化而变化,并能反映出待测离子活度或浓度的电极称为指示电极。
电极电位恒定,不受溶液组成或电流流动方向变化影响的电极称为参比电极。
49.原子吸收光谱仪主要由哪几部分组成?各有何作用?答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。
光源的作用:发射待测元素的特征谱线。
原子化器的作用:将试样中的待测元素转化为气态的能吸收特征光的基态原子。
分光系统的作用:把待测元素的分析线与干扰线分开,使检测系统只能接收分析线。
检测系统的作用:把单色器分出的光信号转换为电信号,经放大器放大后以透射比或吸光度的形式显示出来50.光谱干扰有哪些,如何消除?答:原子吸收光谱法的干扰按其性质主要分为物理干扰、化学干扰、电离干扰和光谱干扰四类。
消除方法:物理干扰的消除方法:配制与待测溶液组成相似的标准溶液或采用标准加入法,使试液与标准溶液的物理干扰相一致。
化学干扰的消除方法:加入释放剂或保护剂。