目录前言 (2)1.主电路设计 (3)1.1.设计内容及技术要求 (3)1.2设计内容 (3)1.3.工作原理 (3)1.4.建模仿真 (9)2.仿真 (11)2.1.电阻性负载仿真波形 (11)2.1.1.波形分析 (16)2.2.阻感性负载(H=0.01) (16)2.2.1.波形分析 (20)2.3.阻感性负载(H=0.1) (20)2.3.1.波形分析 (23)3.触发电路的设计 (23)4.保护电路的设计 (25)4.1过电压的产生及过电压保护 (25)4.2.晶闸管的过电流保护 (26)5.设计体会 (27)参考文献 (28)前言本次课程设计主要是研究单相交流调压电路的设计。
由于交流调压电路的工作情况与负载的性质有很大的关系,交流调压电路可以带电阻性负载,也可以带电感性负载,如感应电动机或其它电阻电感混合负载等。
交流调压电路是采用相位控制方式的交流电力控制电路,通常是将两个晶闸管反并联后串联在每相交流电源与负载之间。
在电源的每半个周期内触发一次晶闸管,使之导通。
与相控整流电路一样,通过控制晶闸管开通时所对应的相位,可以方便的调节交流输出电压的有效值,从而达到交流调压的目的。
其晶闸管可以利用电源自然换相,无需强迫关掉电路,并可实现电压的平滑调节,系统响应速度较快,但它也存在深控时功率因数较低,易产生高次谐波等缺点。
交流调压电路主要应用在电热控制、交流电动机速度控制、交流稳压器等场合,主要有灯光调节,温度调节(如工频加热、感应加热、需控制的家用电器等),泵及风机等异步电动机的软起动,交流电机的调压调速,随电机负载大小自动调压,变压器初级调压(在高压小电流或低压大电流直流电源中,如采用晶闸管相孔整流电路,需要很多晶闸管串联或并联,若采用交流调压电路在变压器初级调压。
其电压电流值都比较合理,在变压器次级只要用二极管整流即可,从而达到减少体积、减低成本的目的)。
与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。
1.主电路的设计1.1.设计内容及技术要求计算机仿真具有效率高,精度高,可靠性高和成本低等特点,已经广泛应用与电力电子电路(或系统)的分析和设计中。
计算机仿真不仅可以取代系统的许多繁琐的人工分析,减轻劳动强度,提高分析和设计能力,避免因为解析法在近似处理中带来的较大误差,还可以与实物试制和调试相互补充,最大限度降低设计成本,缩短系统研制周期。
可以说,电路的计算机仿真技术大大加速了电路的设计和实验过程。
通过本次仿真,学生可以初步认识电力电子计算机仿真的优势,并掌握电力电子计算机仿真的基本方法。
单相交流调压电路的电路参数要求:电源电压220V,工频50Hz,阻感负载。
R=10Ω,电源侧功率因数0.4-0.65可调。
1.2设计内容⑴制定设计方案⑵主电路设计及主电路元件选择⑶驱动电路和保护电路设计及参数计算,器件选择⑷绘制电路原理图⑸总体电路原理图及其说明1.3工作原理单相交流调压电路带组感性负载时的电路以及工作波形如上图所示。
之所产生的滞后由于阻感性负载时电流滞后电压一定角度,再加上移相控制所产生的滞后,使得交流调压电路在阻感性负载时的情况比较复杂,其输出电压,电流与触发角α,负载阻抗角φ都有关系。
当两只反并联的晶闸管中的任何一个导通后,其通态压降就成为另一只的反向电压,因此只有当导通的晶闸管关断以后,另一只晶闸管才有可能承受正向电压被触发导通。
由于感性负载本身滞后于电压一定角度,再加上相位控制产生的滞后,使得交流调压电路在感性负载下大的工作情况更为复杂,其输出电压、电流波形与控制角α、负载阻抗角φ都有关系。
其中负载阻抗角)arctan(RwL=ϕ,相当于在电阻电感负载上加上纯正弦交流电压时,其电流滞后于电压的角度为φ。
为了更好的分析单相交流调压电路在感性负载下的工作情况,此处分φαφαφα<=>,,三种工况分别进行讨论。
(1)φα>情况图1-3电路图图1-4工作波形图(φα>工况)上图所示为单相反并联交流调压电路带感性负载时的电路图,以及在控制角触发导通时的输出波形图,同电阻负载一样,在i u 的正半周α角时,i T 触发导通,输出电压o u 等于电源电压,电流波形o i 从0开始上升。
由于是感性负载,电流o i 滞后于电压o u ,当电压达到过零点时电流不为0,之后o i 继续下降,输出电压o u 出现负值,直到电流下降到0时,1T 自然关断,输出电压等于0,正半周结束,期间电流o i 从0开始上升到再次下降到0这段区间称为导通角0θ。
由后面的分析可知,在φα>工况下, 180<φ因此在2T 脉冲到来之前1T 已关断,正负电流不连续。
在电源的负半周2T 导通,工作原理与正半周相同,在o i 断续期间,晶闸管两端电压波形如图1-4所示。
为了分析负载电流o i 的表达式及导通角θ与α、φ之间的关系,假设电压坐标原点如图所示,在αω=t 时刻晶闸管T 1导通,负载电流i 0应满足方程 L 0Ri d d tio +=i u =i U 2sin t ω 其初始条件为 i 0|αω=t =0,解该方程,可以得出负载电流i 0在α≤t ω≤θα+区间内的表达式为 i 0=])sin()[sin()(2tan /)(2φαωφαφωω-----+t ie t L R U .当t ω=θα+时,i 0=0,代入上式得,可求出θ与α、φ之间的关系为sin (θα+-φ)=sin (α-φ)e φθtan /-利用上式,可以把θ与α、φ之间的关系用下图的一簇曲线来表示。
图1-5θ与α、φ之间的关系曲线图中以φ为参变量,当φ=00时代表电阻性负载,此时θ=180 -α;若φ为某一特定角度,则当α≤θ时,θ=180 ,当α>φ时,θ随着α的增加而减小。
上述电路在控制角为α时,交流输出电压有效值U O 、负载电流有效值I o 、晶闸管电流有效值I T 分别为U o =U iπθααθ)22sin(2sin +-+ I 0=2I m ax o I T *I T =2 I m ax o I T *式中,I m ax o 为当α=0时,负载电流的最大有效值,其值为I m ax o =22)(l R U iω+I T *为晶闸管有效值的标玄值,其值为I T *=φπθφαθπθcos 2)2cos(sin 2++- 由上式可以看出,I T *是α及φ的函数下图给出了以负载阻抗角φ为参变量时,晶闸管电流标幺值与控制角α的关系曲线。
1-6 晶闸管电流标幺值与控制角α的关系曲线当α、φ已知时,可由该曲线查出晶闸管电流标幺值,进而求出负载电流有效值I 0及晶闸管电流有效值I T。
(2)α=φ情况当控制角α=φ时,负载电流i 0的表达式中的第二项为零,相当于滞后电源电压φ角的纯正弦电流,此时导通角θ=1800,即当正半周晶闸管T 1关断时,T 2恰好触发导通,负载电流i 0连续,该工况下两个晶闸管相当于两个二极管,或输入输出直接相连,输出电压及电流连续,无调压作用。
图1-7α=φ情况下的输出波形(3) φα<情况在φα<工况下,阻抗角φ相对较大,相当于负载的电感作用较强,使得负载电流严重滞后于电压,晶闸管的导通时间较长,此时式仍然适用,由于φα<,公式右端小于0,只有当 180)(>-+φαθ时左端才能小于0,因此 180>θ,如图所示,如果用窄脉冲触发晶闸管,在α=wt 时刻1T 被触发导通,由于其导通角大于180 ,在负半周)(πα+=wt 时刻为2T 发出出发脉冲时,1T 还未关断,2T 因受反压不能导通,1T 继续导通直到在)(πα+=wt 时刻因1T 电流过零关断时,2T 的窄脉冲2G u 已撤除,2T 仍然不能导通,直到下一周期1T 再次被触发导通。
这样就形成只有一个晶闸管反复通断的不正常情况,0i 始终为单一方向,在电路中产生较大的直流分量;因此为了避免这种情况发生,应采用宽脉冲或脉冲列触发方式。
图1-8窄脉冲触发方式1.4建模仿真1.建立一个仿真模型的新文件。
在 MATLAB 的菜单栏上点击 File,选择 New,再在弹出菜单中选择 Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。
2.在simulink菜单下面找到simpowersystems从中找出所需的晶闸管,交流电源,电压表,电流表,示波器,阻感负载等。
3.将找到的模型正确的连接起来,如下图所示4.参数设置⑴触发脉冲参数设置如下图所示:其中将周期(period)设置为0.02触发脉冲宽度(pulse width)设置为5相位滞后(phase delay)也就是触发角可设为0-0.01之间的任意数,他们之间的对应关系如下⑵负载参数设置如果负载为电阻性负载,则将电感(inductance)设为0,电容(capacitance)设为inf,本次仿真中的负载为阻感性,其参数设置如下图所示⑶电源参数设置电源电压设为220V,频率设为50Hz,相位角设为0,如需改变可另行设置采样时间设为0,⑷仿真器设置为便于观察波形,将仿真时间设为0.06(三个周期)仿真算法(solver)设为ode23t,其他参数设为默认,设置好后的参数如下图所示:2仿真参数设置好后,点击(start simulink)开始仿真,为便于比较,先将负载设为电阻性负载,改变触发角,观察波形变化,不同触发角时的波形如下2.1电阻性负载仿真波形R=10,触发角为0°R=10,触发角为30°R=10,触发角为90°R=10,触发角为150°2.1.1波形分析以上各图分别为触发角α为0°,30°,45°,90°,120°,150°,180°时所得的仿真波波形,,图中第一个波形为触发脉冲的波形,第二个波形为负载电流的波形,第三个波形为负载电压的波形。
当负载为电阻性负载时,负载电压和负载电流波形一致,随着触发角的增大,波形的占空比减小,电流和电压出现断续。
当触发角为0°时,波形为完整的正弦波;当触发角为度时180°时,波形为一条直线,由此可以说明单相交流调压电路带电阻性负载时的触发角α的取值范围为0°-180°。
2.2阻感性负载(H=0.01)将负载设为阻感性,电感值设为0.1H,改变触发角,观察仿真波形R=10,h=0.01,触发角为0°R=10,h=0.01,触发角为30°R=10,h=0.01,触发角为90°R=10,h=0.01,触发角为150°R=10,h=0.01,触发角为180°2.2.1波形分析以上各图分别为触发角α为0°,30°,45°,90°,120°,150°,180°时所得的仿真波波形,,图中第一个波形为触发脉冲的波形,第二个波形为负载电流的波形,第三个波形为负载电压的波形。