当前位置:文档之家› 岩石材料的蠕变实验及本构模型研究

岩石材料的蠕变实验及本构模型研究

岩石材料的蠕变实验及本构模型研究
流变学作为力学的一个分支,主要研究材料在应力、应变、温度、辐射等条件下与时间因素有关的变形规律,所涉及的内容包括蠕变、应力松弛和弹性后效等。

蠕变是影响岩体稳定性的一个重要因素。

软弱岩石在受到较低水平的应力作用时,就会产生明显的蠕变现象,如软岩巷道中的底鼓,即使是很坚硬的岩体,在高应力作用下同样会产生蠕变,从而影响到工程的功能和使用。

因此,需要对岩石材料的蠕变行为进行深入研究,力求从本质上揭示其蠕变行为的特征。

本文通过实验研究和理论分析,得到了盐岩的基本力学参数,并研究了盐岩在不同应力条件下的力学特性和蠕变行为。

以经典蠕变模型为基础,结合分数阶微积分理论,构建了一个新的蠕变模型,并利用盐岩、泥岩和煤岩的蠕变实验数据对其进行了验证。

(1)对盐岩材料进行了多组单轴和三轴压缩实验,并在每组实验中选取三个试样重复进行实验,以此来降低实验的随机性和试样个体的差异性。

结果三个试样的测试结果比较接近,此批试样的个体差异性较小。

此外,常规压缩实验的结果还表明随着围压的增大,抗压强度和最大应变会随之增大。

(2)在单轴蠕变实验中,选取了四个轴压水平来进行实验,分析了不同轴压对蠕变的影响。

当轴压水平越大时,加速蠕变阶段就会越早地出现,并且稳定蠕变应变率也会越大。

与单轴蠕变相比,当材料受到一个较小的围压作用时,其蠕变行为也会发生巨大的变化,例如蠕变应变率大幅下降、蠕变时间大幅增长、加速蠕变阶段缺失等。

(3)通过分析不同应力条件下的蠕变应变率可以发现,稳定蠕变应变率与轴压大小呈线性关系,加速蠕变应变率与轴压大小也呈现出正相关性。

此外,蠕变等时曲线表明随着时间的延长,轴压大小对蠕变的影响会越来越明显。

相反,围压会明显地降低蠕变应变率并抑制蠕变行为的发展。

(4)结合分数阶微积分理论构建了一个新的非线性蠕变模型,并利用广义塑性力学理论和张量分析理论对新模型在三轴应力状态下的蠕变方程进行了推导。

以盐岩实验数据为基础,对蠕变模型的参数进行了辨识,并验证了模型的准确性。

此外,利用泥岩和煤岩的蠕变实验数据对模型的适用性进行了验证,结果表明新模型可以应用于模拟多种岩石材料的蠕变全过程,具有较为广泛的适用性。

相关主题