当前位置:文档之家› 动力学动态问题的类型和分析技巧9

动力学动态问题的类型和分析技巧9

动力学动态问题的类型和分析技巧一、动力学动态问题的类型施加在物体上的力随着物体的速度变化、位置变化而变化,物体的加速度也随之变化,加速度的变化反过来影响速度、位置的变化,如此循环推进的问题,就是动力学动态问题。

根据物体受力的决定因素不同,可将高中物理中常见的动力学动态问题分为两大基本类型:1、受力与速度有关的动态问题:机车恒定功率启动问题——牵引力与速度有关,雨滴收尾速度问题——空气阻力与速度有关,洛伦兹力相关动态问题——洛伦兹力以及其影响下弹力、摩擦力与速度有关,感应电路安培力相关动态问题——安培力与速度有关,等等。

2、受力与位置有关的动态问题:弹簧、库仑力、曲线约束类问题等,这类问题中,弹簧弹力、电荷之间库仑力、重力电场力沿曲线切向分量、弹力进而影响到的摩擦力,与物体的位置有关,等等。

根据物体的运动轨迹曲直不同,又可将之分为直线运动动态问题和曲线运动动态问题,其中直线运动是曲线运动分析的基础,而曲线运动则需要结合运动的分解与合成来进一步分析。

二、动力学动态问题的分析技巧1、写出瞬间状态的动力学方程并据此分析:初态、转折点处动力学方程,以及各阶段动力学方程;2、抓住运动、受力变化的转折点:加速度为0(速度出现极值)、速度为0或者弹力为0等;3、借助v -t 图象、对称法、微元(积分)法、分解与合成等分析。

三、典型示例1、直线运动中的动态问题(1)受力与速度有关的问题【例1】机车恒定功率启动问题一汽车在平直公路上行驶。

从某时刻开始计时,发动机的功率P 随时间t 的变化如图所示。

假定汽车所受阻力的大小f 恒定不变。

下列描述该汽车的速度v 随时间t 变化的图像中,可能正确的是【例2】雨滴收尾速度问题从地面上以初速度v 0竖直上抛一质量为m 的小球,若运动过程中受到的空气阻力f 与其速率v 成正比,比例系数为k .球运动的速率随时间变化的规律如图2-4所示,t 1时刻到达最高点,再落回地面,落地速率为v 1,且落地前小球已经做匀速运动.下列说法正确的是( )A .上升过程比下降过程所用时间长B .比例系数k =mg v 0C .小球抛出瞬间的加速度大小为⎝⎛⎭⎪⎪⎫1+v 1v 0g D .小球在下降过程中加速度逐渐减小到零并保持不变,其变化快慢也逐渐减小到零并保持不变【练习1】洛伦兹力相关问题1——收尾问题如图所示为一个质量为m 、电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中,不计空气阻力,现给圆环向右的初速度v 0,在以后的运动过程中,圆环运动的速度图像可能是图中的( )【练习2】导体棒、线框磁场中运动问题1——速度问题 如图所示,相距为L 的两条足够长的光滑平行金属导轨,MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。

整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m 、阻值也为R 的金属杆ab 垂直放在导轨上,杆ab 由静止释放,下滑距离x 时达到最大速度。

重力加速度为g ,导轨电阻不计,杆与导轨接触良好。

求:(1)杆ab 下滑的最大加速度;(2)杆ab 下滑的最大速度;(3)上述过程中,杆上产生的热量。

【例3】导体棒磁场中运动问题2——位移问题(微元法)如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。

整个装置处于竖直向上、磁感应强度为B 的匀强磁场中。

现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q。

下列说法正确的是() A.金属棒在导轨上做匀减速运动B.整个过程中电阻R上产生的焦耳热为m v20 2C.整个过程中金属棒在导轨上发生的位移为qR BLD.整个过程中金属棒克服安培力做功为m v20 2【练习3】导体棒磁场中运动问题3——加速度问题(微元法)如图所示,水平面内有两根足够长的平行导轨L1、L2,其间距d =0.5 m,左端接有容量C=2 000 μF的电容。

质量m=20 g的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计。

整个空间存在着垂直导轨所在平面的匀强磁场,磁感应强度B=2 T。

现用一沿导轨方向向右的恒力F1=0.44N作用于导体棒,使导体棒从静止开始运动,经t时间后到达B处,速度v=5 m/s。

此时,突然将拉力方向变为沿导轨向左,大小变为F2,又经2t时间后导体棒返回到初始位置A处,整个过程电容器未被击穿。

求(1)导体棒运动到B处时,电容C上的电量;(2)t的大小;(3)F2的大小。

【例4】洛伦兹力相关问题2——分离问题如图所示,带正电的物块A放在不带电的小车B上,开始时都静止,处于垂直纸面向里的匀强磁场中。

t=0时加一个水平恒力F向右拉小车B,t=t1时A相对于B开始滑动。

已知地面是光滑的。

AB间粗糙,A带电量保持不变,小车足够长。

从t=0开始A、B的速度—时间图象,正确的是vB vBvBvBBAF(2)受力与位置有关的问题【例5】弹簧问题1——速度、加速度问题(对称法)如图所示,弹簧左端固定,右端自由伸长到O点并系住质量为m 的物体,现将弹簧压缩到A点,然后释放,物体可以一直运动到B点。

如果物体受到的阻力恒定,则()A.物体从A到O先加速后减速B.物体从A到O做加速运动,从O到B做减速运动C.物体运动到O点时,所受合力为零D.物体从A到O的过程中,加速度逐渐减小【例6】库仑力问题1——速度问题和q2的点电荷放在x两电荷量分别为q轴上的O、M两点,两电荷连线上各点电势φ随x变化的关系如图6所示,其中A、N两点的电势均为零,ND段中的C点电势最高,则A.N点的电场强度大小为零B.A点的电场强度大小为零C.NC间场强方向指向x轴正方向D.将一负点电荷从N点移到D点,电场力先做正功后做负功【例7】约束问题1——弹簧问题如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变【练习4】约束问题2——2015年全国卷2如图,滑块a、b的质量均为m,a套在固定直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接。

不计摩擦,a、b可视为质点,重力加速度大小为g.则A.a落地前,轻杆对b一直做正功B.a 落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg【例8】弹簧问题2——分离问题如图所示,在轻质弹簧下吊一物体,静止后弹簧的伸长量为△L,现有一水平木板将物体托起,使弹簧恢复到自然长度L,并保持静止,然后,让木板由静止开始以加速度a(a<g)匀加速下降,直到物体与木板开始分离。

这一过程经历的时间为多少?【练习5】库仑力问题2——分离问题如图所示,A球固定在水平绝缘地面上,在A球的正上方很远处有一块水平绝缘板P,B球放在P板上,两球均可视为点电荷,电荷量均为+q;现手持P 板使其从静止开始以恒BPMma定加速度a (a <g )竖直向下做匀加速直线运动,直到两球相距为h 0(h 0未知)时,B 球与P 板分离.已知B 球的质量为m ,重力加速度为g ,静电力常量为k ,且移动过程中,P 板始终保持水平。

试求:(1)两球相距为h (h >h 0)时,P 板对B 球的支持力为多大?(2)若两球起始距离为3h 0,则B 在脱离绝缘板前的运动过程中,静电力和P 板的支持力对B 球做功的代数和为多少?2、曲线运动中的动态问题(1)受力与速度有关的问题【例9】考虑空气阻力的平抛问题无风的情况下,在离地面高为H 处,将质量为m 的球以速度v 0水平抛出,球在空气中运动时所受的阻力大小f =kv ,v 是球的速度,k 是已知的常数,阻力的方向与速度方向相反,并且球在着地前已经竖直向下做匀速运动。

已知重力加速度为g ,则下列说法中正确的是A. 球刚抛出时加速大小为g m kv a +=0B. 球着地前瞬间的速度大小为kmg v = C. 球从抛出到着地过程中克服空气阻力做的功22320221k g m mv mgH W -+=D. 若将球从同一地点由静止释放,则两种情况下球在空中运动时间相同v 0【例10】带电粒子在磁场中的摆线运动问题如图所示,在竖直绝缘的平台上,一个带正电的小球以水平速度v 0抛出,落在地面上的A 点,若加一垂直纸面向里的匀强磁场,则小球的落点A .仍在A 点B .在A 点左侧C .在A 点右侧D .无法确定【例11】带电粒子在磁场中管道内运动问题如图,光滑水平地面上方错误!未找到引用源。

的区域内存在着水平向内的匀强磁场,磁感应强度为B =0.5T 错误!未找到引用源。

有一长度为 2.0m l =内壁粗糙的绝缘试管竖直放置,试管底端有一可以视为质点的带电小球,小球质量为错误!未找到引用源。

,带电量为q =0.3C 小球和试管内壁的滑动摩擦因数为=0.5μ。

开始时试管和小球以v 0=1.0m/s 的速度向右匀速运动,当试管进入磁场区域时对试管施加一外力作用使试管保持a =2.0m/s 2的加速度向右做匀加速直线运动,小球经过一段时间离开试管。

运动过程中试管始终保持竖直,小球带电量始终不变,g =10m/s 2。

求:(1)小球离开试管之前所受摩擦力f 和小球竖直分速度v y 间的函数关系(用各物理量的字母表示)。

(2)小球离开试管时的速度。

B v 0yx O。

相关主题