第一章电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生变化2、产生感应电流的方法.(1)磁铁运动。
(2)闭合电路一部分运动。
(3)磁场强度B变化或有效面积S变化。
注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。
不管是动生电流还是感生电流,我们都统称为“感应电流”。
3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不一定切割,切割不一定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
4、分析是否产生感应电流的思路方法.(1)判断是否产生感应电流,关键是抓住两个条件:①回路是闭合导体回路。
②穿过闭合回路的磁通量发生变化。
注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。
(2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况:①穿过闭合回路的磁场的磁感应强度B发生变化。
②闭合回路的面积S发生变化。
③磁感应强度B和面积S的夹角发生变化。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。
②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。
(2)楞次定律的因果关系:闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。
(3)“阻碍”的含义.①“阻碍”可能是“反抗”,也可能是“补偿”.当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。
(“增反减同”)②“阻碍”不等于“阻止”,而是“延缓”.感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。
当由于原磁通量的增加引起感应电流时,感应电流的磁场方向与原磁场方向相反,其作用仅仅使原磁通量的增加变慢了,但磁通量仍在增加,不影响磁通量最终的增加量;当由于原磁通量的减少而引起感应电流时,感应电流的磁场方向与原磁场方向相同,其作用仅仅使原磁通量的减少变慢了,但磁通量仍在减少,不影响磁通量最终的减少量。
即感应电流的磁场延缓了原磁通量的变化,而不能使原磁通量停止变化,该变化多少磁通量最后还是变化多少磁通量。
③“阻碍”不意味着“相反”.在理解楞次定律时,不能把“阻碍”作用认为感应电流产生磁场的方向与原磁场的方向相反。
事实上,它们可能同向,也可能反向。
(“增反减同”)(4)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在客服这种阻碍的过程中,其他形式的能转化成电能。
(5)“阻碍”的形式.(6)适用范围:一切电磁感应现象.(7)研究对象:整个回路.(8)使用楞次定律的步骤:①明确(引起感应电流的)原磁场的方向.②明确穿过闭合电路的磁通量(指合磁通量)是增加还是减少.③根据楞次定律确定感应电流的磁场方向.④利用安培定则确定感应电流的方向.2、右手定则.(1)内容:伸开右手,让拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,让磁感线垂直(或倾斜)从手心进入,拇指指向导体运动的方向,其余四指所指的方向就是感应电流的方向。
(2)作用:判断感应电流的方向与磁感线方向、导体运动方向间的关系。
(3)适用范围:导体切割磁感线。
(4)研究对象:回路中的一部分导体。
(5)右手定则与楞次定律的联系和区别 .① 联系:右手定则可以看作是楞次定律在导体运动情况下的特殊运用,用右手定则和楞次定律判断感应电流的方向,结果是一致的。
② 区别:右手定则只适用于导体切割磁感线的情况(产生的是“动生电流”),不适合导体不运动,磁场或者面积变化的情况,即当产生“感生电流时,不能用右手定则进行判断感应电流的方向。
也就是说,楞次定律的适用范围更广,但是在导体切割磁感线的情况下用右手定则更容易判断。
【小技巧】:左手定则和右手定则很容易混淆,为了便于区分,把两个定则简单地总结为“通电受力用左手,运动生电用右手”。
“力”的最后一笔“丿”方向向左,用左手;“电”的最后一笔“乚”方向向右,用右手。
四、法拉第电磁感应定律 .1、法拉第电磁感应定律 .(1)内容:电路中感应电动势的大小,跟穿过这一电路的磁通量变化率成正比。
(2)公式:t E ∆∆Φ=(单匝线圈) 或 tn E ∆∆Φ=(n 匝线圈). 对表达式的理解:① E ∝⇔∆∆Φt t k E ∆∆Φ= 。
对于公式tk E ∆∆Φ=,k 为比例常数,当E 、ΔΦ、Δt 均取国际单位时,k =1,所以有tE ∆∆Φ= 。
若线圈有n 匝,且穿过每匝线圈的磁通量变化率相同,则相当于n 个相同的电动势t∆∆Φ串联,所以整个线圈中电动势为tnE ∆∆Φ= (本式是确定感应电动势的普遍规律,适用于所有电路,此时电路不一定闭合). ② 在tnE ∆∆Φ=中(这里的ΔΦ取绝对值,所以此公式只计算感应电动势E 的大小,E 的方向根据楞次定律或右手定则判断),E 的大小是由匝数及磁通量的变化率(即磁通量变化的快慢)决定的,与Φ或ΔΦ之间无大小上的必然联系(类比学习:关系类似于a 、v 和Δv 的关系)。
③ 当Δt 较长时,t nE ∆∆Φ=求出的是平均感应电动势;当Δt 趋于零时,tn E ∆∆Φ=求出的是瞬时感应电动势。
2、E =BLv 的推导过程 .如图所示闭合线圈一部分导体ab 处于匀强磁场中,磁感应强度是B ,ab 以速度v 匀速切割磁感线,求产生的感应电动势?推导:回路在时间t 内增大的面积为:ΔS =L (v Δt ) .穿过回路的磁通量的变化为:ΔΦ = B ·ΔS= BLv ·Δt . 产生的感应电动势为:BLv ttBLv t E =∆∆⋅=∆∆Φ=(v 是相对于磁场的速度).若导体斜切磁感线(即导线运动方向与导线本身垂直, 但跟磁感强度方向有夹角),如图所示,则感应电动势为E =BLvsin θ(斜切情况也可理解成将B 分解成平行于v 和垂直于v 两个分量)3、E =BLv 的四个特性 . (1)相互垂直性 .公式E =BLv 是在一定得条件下得出的,除了磁场是匀强磁场外,还需要B 、L 、v三者相互垂直,实际问题中当它们不相互垂直时,应取垂直的分量进行计算。
若B 、L 、v 三个物理量中有其中的两个物理量方向相互平行,感应电动势为零。
(2)L 的有效性 .公式E =BLv 是磁感应强度B 的方向与直导线L 及运动方向v 两两垂直的情形下,导体棒中产生的感应电动势。
L 是直导线的有效长度,即导线两端点在v 、B 所决定平面的垂线方向上的长度。
实际上这个性质是“相互垂直线”的一个延伸,在此是分解L ,事实上,我们也可以分解v 或者B ,让B 、L 、v 三者相互垂直,只有这样才能直接应用公式E =BLv 。
E =BL (v sin θ)或E =Bv (L sin θ) E = B ·2R ·v有效长度——直导线(或弯曲导线)在垂直速度方向上的投影长度.(3)瞬时对应性 .对于E =BLv ,若v 为瞬时速度,则E 为瞬时感应电动势;若v 是平均速度,则E为平均感应电动势。
(4)v 的相对性 .公式E =BLv 中的v 指导体相对磁场的速度,并不是对地的速度。
只有在磁场静止,导体棒运动的情况下,导体相对磁场的速度才跟导体相对地的速度相等。
4、公式tnE ∆∆Φ=和E =BLvsin θ的区别和联系 . (1)两公式比较 .(2)两个公式的选用 .① 求解导体做切割磁感线运动产生感应电动势的问题时,两个公式都可以用。
② 求解某一过程(或某一段时间)内的感应电动势、平均电流、通过导体横截面的电荷量(q =I Δt )等问题,应选用tnE ∆∆Φ= . ③ 求解某一位置(或某一时刻)的感应电动势,计算瞬时电流、电功率及某段时间内的电功、电热等问题,应选用E =BLvsi nθ 。
5、感应电动势的两种求解方法 . (1)用公式tn E ∆∆Φ=求解 . t nE ∆∆Φ=是普遍适用的公式,当ΔΦ仅由磁场的变化引起时,该式可表示为S tB n E ∆∆=;若磁感应强度B 不变,ΔΦ仅由回路在垂直于磁场方向上得面积S 的变化引起时,则可表示为公式BtSnE∆∆=,注意此时S并非线圈的面积,而是线圈内部磁场的面积。
(2)用公式E=BLvsinθ求解.①若导体平动垂直切割磁感线,则E=BLv,此时只适用于B、L、v三者相互垂直的情况。
②若导体平动但不垂直切割磁感线,E=BLvsinθ(此点参考P4“E=BLv的推导过程”)。
6、反电动势.电源通电后,电流从导体棒的a端流向b端,用左手定则可判断ab棒受到的安培力水平向右,则ab棒由静止向右加速运动,而ab棒向右运动后,会切割磁感线,从而产生感应电动势(如图),此感应电动势的阻碍电路中原来的电流,即感应电动势的方向跟外加电压的方向相反,这个感应电动势称为“反电动势”。
五、电磁感应规律的应用.1、法拉第电机 .(1)电机模型 .(2)原理:应用导体棒在磁场中切割磁感线而产生感应电动势。
.①铜盘可以看作由无数根长度等于铜盘半径的导体棒组成,导体棒在转动过程中要切割磁感线。
②大小:ω221BLE=(其中L为棒的长度,ω为角速度)E=BLvtnE∆∆Φ=棒上各点速度不同,其平均速度为棒上中点的速度:ωω⋅=⋅=Lrv21中。
利用E=BLv知,棒上的感应电动势大小为:如果经过时间Δt,则棒扫过的面积为tLLtS∆⋅=⋅∆⋅=∆ωππω22212磁通量的变化量为:ωω22121BL L BL v BL E =⋅==t BL L t B S B ∆⋅=⋅∆⋅⋅=∆⋅=∆Φωππω22212由tE ∆∆Φ=知,棒上得感应电动势大小为 ωω222121BL t tBL t E =∆∆⋅=∆∆Φ=建议选用E =BLv 配合平均速度ωω⋅=⋅=L r v 2中来推导,此种推导方式方便于理解和记忆。
③ 方向:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路的电流方向一致。