欧几里得算法与扩展欧几里得算法(求二元一次不定方程、乘法逆元)
1.欧几里得算法,即辗转相除法。
用于求两个整数的最大公约数比较方便,时间复杂度为O(logN)N为两个整数的规模。
最大公约数,是能够同时被两个整数整除的最大整数。
比如说,求56和21的最大公约数:(每行数分别代表a=56,b=21,a%b)此时得到最大公约数为7。
递归代码如下:
int gcd(int a, int b)
return b ? gcd(b, a%b) : a;
2.扩展欧几里得算法
顾名思义,扩展欧几里得算法就是对欧几里得算法的扩展,可以应用于求二元一次方程的通解、乘法逆元等。
对于上面的欧几里得算法,当递归到出口时,a=7,b=0。
很容易就可以得到一组ax+by=7的解:x=1,y=0。
那么如何通过7x+y=7的解逆推出56x+21y=7的解呢?
对于欧几里得算法的每一个状态,都存在ax+by=gcd(a,b)的解,我们假设有这样两组解(且他们为相邻状态):
ax1+by1=gcd(a,b)
a'x2+b'y2=gcd(a',b')
那么可以知道:a'=b b'=a%b 且gcd(a',b')=gcd(b,a%b)=gcd(a,b),
所以有
ax1+by1=bx2+(a%b)y2 另a%b可写为 a-a-b
所以有 ax1+by1=bx2+(a-(a-b)b)y2
故ax1+by1=ay2+bx2+(a-b)by2
故ax1=ay2 by1 = b(x2+ (a-b)by2)
故 x1=y2 y1 = x2 +(a-b)y2
故可以得到x1,y1与x2,y2的关系 : x1=y2 y1 = x2 +(a-b)y2
我们已知的是最后一组解,那么就要根据最后一组解逆推上去,就可以得到ax+by=gcd(a,b)的一组解了。
代码如下:
int exgcd(int a, int b, intx, int y)
return a;
int r = exgcd(b, a%b, x, y); --递归到求出公约数,开始倒着求每一组的x,y。
最后就得到这样一组特解了。
y = t - (a - b)*y;
return r;
现在,通过扩展欧几里得算法,可以求出ax+by=gcd(a,b)的一组特解。
那么如何求其通解呢?
3.二元一次方程通解
假设求得的特解为ax0+by0=r ,r=gcd(a,b).
ax0+by0+ab*k-ab*k=r
a(x0+b*k)+b(y0-a*k)=r
x=x0+b*k 、y=y0-a*k
这样写,可能不同组解的跨度太大了,所以可以写成
x=x0+(b-r)*k 、 y=y0-(a-r)*k
对于ax+by =c,而c不是a和b的最大公约数,其通解可以用ax+by=gcd(a,b)的通解乘上 c-gcd(a,b)即可。
这里好像有一个贝祖定理::对于给定的正整数a,b,方程ax+by=c 有整数解的充要条件为c是gcd(a,b)的整数倍。
4.乘法逆元
另外,扩展欧几里得算法还可以用来求乘法逆元,首先看乘法逆元的定义:
如果ax≡1 (mod p),且gcd(a,p)=1(a与p互质),则称a关于模p 的乘法逆元为x。
通俗点讲就是 a*x的结果取余p为1。
这样就可以转换成求ax+py=1的解。
所以要求a*x+b*y=m,可以先求a*x+b*y=gcd(a,b).
Type?"help",?"copyright",?"credits"?or?"license"?for?more?in formation.
定义:对于不定方程:a*x + b*y = c,判断此不定方程有整数解的条件是gcd(a,b)|c
long long g = exgcd(b, a % b, x, y);
long long getInv3(long long a, long long p) {
基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。
while(scanf("%d%d%d",a,b,k)!=EOF)
if(A==B) {cout"0"endl; continue;}
解释:设最大容量为 3 的是 A 号电容,另一个是 B 号电容,对应的操作是(充电 A)= (转移 A - B) = (充电 A)= (转移 A - B),这样 A 就是目标的 2 电量。
欧几里得算法。