安培力作用下导体的运动图3551.两个相同的轻质铝环能在一个光滑的绝缘圆柱体上自由移动,设大小不同的电流按如图355所示的方向通入两铝环,则两环的运动情况是 ( ) A .都绕圆柱体转动B .彼此相向运动,且具有大小相等的加速度C .彼此相向运动,电流大的加速度大D .彼此背向运动,电流大的加速度大 答案 B安培力作用下导体的平衡图3562.如图356所示,用两根轻细金属丝将质量为m 、长为l 的金属棒ab 悬挂在c 、d 两处,置于匀强磁场内.当棒中通以从a 到b 的电流I 后,两悬线偏离竖直方向θ角而处于平衡状态.为了使棒平衡在该位置上,所需的磁场的最小磁感应强度的大小、方向为( ) A.mgIl tan θ,竖直向上B.mgIltan θ,竖直向下 C.mgIl sin θ,平行悬线向下 D.mgIlsin θ,平行悬线向上答案 D解析 要求所加磁场的磁感应强度最小,应使棒平衡时所受的安培力有最小值.由于棒的重力恒定,悬线拉力的方向不变,由画出的力的三角形可知,安培力的最小值为F min =mg sin θ,即IlB min =mg sin θ,得B min =mgIlsin θ,方向应平行于悬线向上.故选D.安培力和牛顿第二定律的结合图3573.澳大利亚国立大学制成了能把2.2 g 的弹体(包括金属杆EF 的质量)加速到10 km /s 的电磁炮(常规炮弹的速度约为2 km/s).如图357所示,若轨道宽为2 m ,长为100 m ,通过的电流为10 A ,试求轨道间所加匀强磁场的磁感应强度 (轨道摩擦不计) 答案 55 T解析 由运动学公式求出加速度a ,由牛顿第二定律和安培力公式联立求出B . 根据2ax =v 2t -v 20得炮弹的加速度大小为a =v 2t2x =(10×103)22×100m /s 2=5×105 m/s 2. 根据牛顿第二定律F =ma 得炮弹所受的安培力F =ma =2.2×10-3×5×105 N =1.1×103 N ,而F =BIL ,所以B =F IL =1.1×10310×2T =55 T.(时间:60分钟)题组一 安培力作用下导体的运动图3581.把一根柔软的螺旋形弹簧竖直悬挂起来,使它的下端刚好跟杯里的水银面相接触,并使它组成如图388所示的电路图.当开关S 接通后,将看到的现象是( ) A .弹簧向上收缩 B .弹簧被拉长 C .弹簧上下跳动 D .弹簧仍静止不动 答案 C解析 因为通电后,线圈中每一圈之间的电流是同向的,互相吸引,线圈就缩短,电路就断开了,一断开没电流了,线圈就又掉下来接通电路……如此通断通断,就上下跳动.图3592.通有电流的导线L1、L2处在同一平面(纸面)内,L1是固定的,L2可绕垂直纸面的固定转轴O转动(O为L2的中心),各自的电流方向如图359所示.下列哪种情况将会发生() A.因L2不受磁场力的作用,故L2不动B.因L2上、下两部分所受的磁场力平衡,故L2不动C.L2绕轴O按顺时针方向转动D.L2绕轴O按逆时针方向转动答案 D解析由右手螺旋定则可知导线L1的上方的磁场的方向为垂直纸面向外,且离导线L1的距离越远的地方,磁场越弱,导线L2上的每一小部分受到的安培力方向水平向右,由于O点的下方磁场较强,则安培力较大,因此L2绕轴O按逆时针方向转动,D选项对.3.图3510(2013·贵州五校联考)一直导线平行于通电螺线管的轴线放置在螺线管的上方,如图3510所示,如果直导线可以自由地运动且通以方向为由a到b的电流,则导线ab受磁场力方向后的运动情况为()A.从上向下看顺时针转动并靠近螺线管B.从上向下看顺时针转动并远离螺线管C.从上向下看逆时针转动并远离螺线管D.从上向下看逆时针转动并靠近螺线管答案 D解析本题考查安培定则以及左手定则,意在考查学生对安培定则以及左手定则的应用的理解,先由安培定则判断通电螺线管的南北两极,找出导线左右两端磁感应强度的方向,并用左手定则判断这两端受到的安培力的方向,如图(a)所示.可以判断导线受磁场力后从上向下看按逆时针方向转动,再分析此时导线位置的磁场方向,再次用左手定则判断导线受磁场力的方向,如图(b)所示,导线还要靠近螺线管,所以D正确,A、B、C错误.图(a)图(b)图35114.一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,当两线圈通以如图3511所示的电流时,从左向右看,则线圈L1将()A.不动B.顺时针转动C.逆时针转动D.向纸面内平动答案 B解析法一利用结论法.环形电流L1、L2之间不平行,则必有相对转动,直到两环形电流同向平行为止,据此可得L1的转动方向应是:从左向右看线圈L1顺时针转动.法二等效分析法.把线圈L1等效为小磁针,该小磁针刚好处于环形电流I2的中心,通电后,小磁针的N极应指向该点环形电流I2的磁场方向,由安培定则知I2产生的磁场方向在其中心竖直向上,而L1等效成小磁针后转动前,N极应指向纸里,因此应由向纸里转为向上,所以从左向右看,线圈L1顺时针转动.法三直线电流元法.把线圈L1沿转动轴分成上下两部分,每一部分又可以看成无数直线电流元,电流元处在L2产生的磁场中,据安培定则可知各电流元所在处磁场方向向上,据左手定则可得,上部电流元所受安培力均指向纸外,下部电流元所受安培力均指向纸里,因此从左向右看线圈L1顺时针转动.故正确答案为B.题组二通电导线在磁场中的平衡图35125.如图3512所示条形磁铁放在水平面上,在它的上方偏右处有一根固定的垂直纸面的直导线,当直导线中通以图示方向的电流时,磁铁仍保持静止.下列结论正确的是()A.磁铁对水平面的压力减小B.磁铁对水平面的压力增大C.磁铁对水平面施加向左的静摩擦力D.磁铁所受的合外力增加答案BC图35136.质量为m的通电细杆ab置于倾角为θ的导轨上,导轨的宽度为d,杆ab与导轨间的动摩擦因数为μ.有电流时,ab恰好在导轨上静止,如图3513所示.图中的四个侧视图中,标出了四种可能的匀强磁场方向,其中杆ab与导轨之间的摩擦力可能为零的图是()答案AB解析选项A中,通电细杆可能受重力、安培力、导轨的弹力作用处于静止状态,如图所示,所以杆与导轨间的摩擦力可能为零.当安培力变大或变小时,细杆有上滑或下滑的趋势,于是有静摩擦力产生.选项B中,通电细杆可能受重力、安培力作用处于静止状态,如图所示,所以杆与导轨间的摩擦力可能为零.当安培力减小时,细杆受到导轨的弹力和沿导轨向上的静摩擦力,也可能处于静止状态.选项C和D中,通电细杆受重力、安培力、导轨弹力作用具有下滑趋势,故一定受到沿导轨向上的静摩擦力,如图所示,所以杆与导轨间的摩擦力一定不为零.图35147.如图3514所示,金属棒MN两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M向N的电流,平衡时两悬线与竖直方向夹角均为θ,如果仅改变下列某一个条件,θ角的相应变化情况是()A.棒中的电流变大,θ角变大B.两悬线等长变短,θ角变小C .金属棒质量变大,θ角变大D.磁感应强度变大,θ角变小答案 A图35158.如图3515所示,挂在天平底部的矩形线圈abcd的一部分悬在匀强磁场中,当给矩形线圈通入如图所示的电流I时,调节两盘中的砝码,使天平平衡.然后使电流I反向,这时要在天平的左盘上加质量为2×10-2 kg的砝码,才能使天平重新平衡.求磁场对bc边作用力的大小.若已知矩形线圈共10匝,通入的电流I=0.1 A,bc边长度为10 cm,求该磁场的磁感应强度.(g取10 m/s2)答案0.1 N 1 T解析根据F=BIL可知,电流反向前后,磁场对bc边的作用力大小相等,设为F,但由左手定则可知它们的方向是相反的.电流反向前,磁场对bc边的作用力向上,电流反向后,磁场对bc边的作用力向下.因而有2F=2×10-2×10 N=0.2 N,所以F=0.1 N,即磁场对bc边的作用力大小是0.1 N.因为磁场对电流的作用力F=NBIL,故B=FNIL=0.110×0.1×0.1T=1 T.图35169.如图3516所示,在倾角为37°的光滑斜面上有一根长为0.4 m,质量为6×10-2kg的通电直导线,电流I=1 A,方向垂直纸面向外,导线用平行于斜面的轻绳拴住不动,整个装置放在磁感应强度每秒增加0.4 T,方向竖直向上的磁场中,设t=0,B=0,则需要多长时间斜面对导线的支持力为零?(g取10 m/s2)答案 5 s解析导线恰要离开斜面时受力情况如图.由平衡条件,得:F=mg/tan 30°.①而F=BIl.②B=0.4t③代入数据解①②③即得:t=5 s.图351710.如图3517所示,两平行金属导轨间的距离L =0.40 m ,金属导轨所在的平面与水平面夹角θ=37°,在导轨所在平面内,分布着磁感应强度B =0.5 T 、方向垂直于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E =4.5 V 、内阻r =0.50 Ω的直流电源.现把一个质量m =0.040 kg 的导体棒ab 放在金属导轨上,导体棒恰好静止.导体棒与金属导轨垂直且接触良好,导体棒与金属导轨接触的两点间的电阻R 0=2.5 Ω,金属导轨电阻不计,g 取10 m/s 2.已知sin 37°=0.60,cos 37°=0.80,求: (1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力大小. 答案 (1)1.5 A (2)0.30 N (3)0.06 N解析 (1)根据闭合电路欧姆定律I =E R 0+r =1.5 A.(2)导体棒受到的安培力 F 安=BIL =0.30 N.(3)导体棒受力如图,将重力正交分解 F 1=mg sin 37°=0.24 N ,F 1<F 安,根据平衡条件,mg sin 37°+F f =F 安, 解得F f =0.06 N.图351811.如图3518所示,水平放置的两导轨P 、Q 间的距离L =0.5 m ,垂直于导轨平面的竖直向上的匀强磁场的磁感应强度B =2 T ,垂直于导轨放置的ab 棒的质量m =1 kg ,系在ab 棒中点的水平绳跨过定滑轮与重量G =3 N 的物块相连.已知ab 棒与导轨间的动摩擦因数μ=0.2,电源的电动势E =10 V 、内阻r =0.1 Ω,导轨的电阻及ab 棒的电阻均不计.要想ab 棒处于静止状态,R 应在哪个范围内取值?(g 取10 m/s 2)答案 见解析解析 依据物体的平衡条件可得, ab 棒恰不右滑时: G -μmg -BI 1L =0ab 棒恰不左滑时:G +μmg -BI 2L =0 依据闭合电路欧姆定律可得: E =I 1(R 1+r ) E =I 2(R 2+r )由以上各式代入数据可解得:R 1=9.9 Ω,R 2=1.9 Ω 所以R 的取值范围为: 1.9 Ω≤R ≤9.9 Ω.题组三 安培力与牛顿运动定律的综合应用图351912.如图3519所示,在同一水平面的两导轨相互平行,并处在竖直向上的匀强磁场中,磁感应强度为0.2 T ,一根质量为0.6 kg ,有效长度为2 m 的金属棒放在导轨上,当金属棒中的电流为5 A 时,金属棒做匀速直线运动;当金属棒中的电流突然增大为8 A 时,求金属棒能获得的加速度的大小. 答案 2 m/s 2解析 当金属棒中的电流为5 A 时,金属棒做匀速运动,有I 1BL =f ① 当金属棒中的电流为8 A 时,金属棒能获得的加速度为a ,则 I 2BL -f =ma ②联立①②解得a =BL (I 2-I 1)m=2 m/s 2图352013.据报道,最近已研制出一种可投入使用的电磁轨道炮,其原理如图3520所示.炮弹(可视为长方形导体)置于两固定的平行导轨之间,并与轨道壁密接.开始时炮弹在导轨的一端,通以电流后炮弹会被磁力加速,最后从位于导轨另一端的出口高速射出.设两导轨之间的距离L=0.10 m,导轨长x=5.0 m,炮弹质量m=0.30 kg.导轨上的电流I的方向如图中箭头所示.可以认为,炮弹在轨道内运动时,它所在处磁场的磁感应强度始终为B=2.0 T,方向垂直于纸面向里.若炮弹出口速度为v=2.0×103 m/s,求通过导轨的电流I.忽略摩擦力与重力的影响.答案6×104 A解析在导轨通有电流I时,炮弹作为导体受到磁场施加的安培力为F=IbL①设炮弹的加速度的大小为a,则有F=ma②炮弹在两导轨间做匀加速运动,因而v2=2ax③联立①②③代入题给数据得:I=0.6×105 A故通过导轨的电流I=6×104A.。