习题十一、选择题1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ](A )0()Nf v dv ∞⎰; (B )201()2mv f v dv ∞⎰;(C )201()2mv Nf v dv ∞⎰;(D )01()2mvf v dv ∞⎰。
答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2.下列对最概然速率p v 的表述中,不正确的是 [ ](A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。
答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
3.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ](A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高;(C )两种气体的温度相同; (D )两种气体的压强相同。
答案:Arms v =222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
4.如下图所示,若在某个过程中,一定量的理想气体的热力学能(内能)U 随压强p 的变化关系为一直线(其 延长线过U —p 图的原点),则该过程为[ ](A )等温过程; (B )等压过程; (C )等容过程; (D )绝热过程。
答案:C解:由图知内能U kp =,k 为曲线斜率,而022m i iU RT pV M ==,因此,V 为常数,所以本题答案为C 。
5.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ⎛⎫ ⎪⎝⎭和BU V ⎛⎫⎪⎝⎭的关系为 [ ](A )A B U U V V ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;(B )A B U U V V ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;(C )A BU U V V ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(D )无法判断。
答案:A解:理想气体状态方程PV RT ν=,内能2iU RT ν=(0m Mν=)。
由两式得2U i P V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
二、填空题1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示下列各量:1)速率大于100m/s 的分子数 ;2)分子平动动能的平均值 ;3)多次观察某一分子速率,发现其速率大于100m/s 的概率 ;答案: 100()f v Ndv ∞⎰;201()2mv f v dv ∞⎰; 100()f v dv ∞⎰。
解:根据速率分布函数()f v 的统计意义,()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,12()v v f v Ndv ⎰表示速率在1v 到2v 之间的分子数,21()v v f v NdvN⎰表示速率在1v 到2v 之间的分子数占总分子数的比例,也即某一分子速率在1v 到2v 的概率。
2.氢气在不同温度下的速率分布曲线如图所示, 则其中曲线1所示温度1T 与曲线2所示温度2T 的高低 有1T 2T (填 “大于”、“小于” 或“等于”答案:小于。
解:根据最概然速率p v =曲线1和曲线2都表示氢气的速率分布曲线,而曲线2所示的最概然速率大于曲线1所示的最概然速率,因此曲线2所示的温度高于曲线1所示的温度。
3.温度为T 的热平衡态下,物质分子的每个自由度都具有的平均动能为 ;温度为T 的热平衡态下,每个分子的平均总能量 ;温度为T 的热平衡态下,νmol(0/m M ν=为摩尔数)分子的平均总能量 ;温度为T 的热平衡态下,每个分子的平均平动动能 。
答案:12kT ;2i kT ;2i RT ν;kT 23。
4.质量为50.0g 、温度为18.0o C 的氦气装在容积为10.0升的封闭容器内,容器以200v =m/s 的速率做匀速直线运动。
若容器突然停止,定向运动的动能全部转化为分子热运动的动能,则平衡后氦气的温度将增加 K ;压强将增加 Pa 。
答案:6.42K ;50.6710Pa ⨯。
解:气体定向运动的动能全部转化为气体分子的热运动动能(此处即为热力学能),即200122m i m v U R T M =∆=∆(m 0为气体总质量,M 为摩尔质量。
) 由上式,得 322410(200) 6.42K 38.31Mv T iR -⨯⨯∆===⨯ 333505010 6.420.6710Pa 4108.311010m R T p MV ---∆⨯⨯∆==⨯⨯⨯=⨯⨯5.一定量的理想气体,在温度不变的情况下,当压强降低时,分子的平均碰撞次数Z 的变化情况是z (填“减小”、“增大”或“不变”),平均自由程λ的变化情况是λ (填“减小”、“增大”或“不变”)。
答案:减小;增大。
解:分子的平均碰撞次数2z d nv ,平均自由程λ=,式中v =根据题意,理想气体温度不变,因此v 不变。
根据p nkT =,根据题意,理想气体压强降低,n 减小,所以分子的平均碰撞次数Z 减小,平均自由程λ增大。
三、计算题1.设想每秒有2310个氧分子(质量为32原子质量单位)以-1500m s ⋅的速度沿着与器壁法线成45o 角的方向撞在面积为43210m -⨯的器壁上,求这群分子作用在器壁上的压强。
答案:41.8810Pa p =⨯解:如图所示,Fp S=所有分子对器壁的冲量为: 2c o s F t N m v θ∆=⋅ 式中2310N =。
取1s t ∆= 则2cos F N mv θ=⋅42cos 45 1.8810Pa oF N mv P S S⋅===⨯2.设氢气的温度为300℃。
求速度大小在3000m/s 到3010m/s 之间的分子数N 1与速度大小在p v 到10+p v m/s 之间的分子数N 2之比。
答案:120.78N N =。
解:23222()4()e 2mv kT m f v v kTππ-=,2182 m/s pv== 11()N Nf v v =∆,22()p N Nf v v =∆2222()2221122222()()e e 0.78()()e p p mv M v v kT RTmv p p p p kT pN f v v f v v vN f v v f v v v ----∆=====∆3.导体中自由电子的运动可以看成类似于气体分子的运动,所以常常称导体中的电子为电子气,设导体中共有N 个自由电子,电子气中电子的最大速率为f v (称做费米速率),电子的速率分布函数为:24,0()0,ff Av v v f v v v π⎧≤≤⎪=⎨>⎪⎩式中A 为常量,求:(1)用N 和f v 确定常数A ;(2)电子气中一个自由电子的平均动能。
答案:(1)334f A v π=;(2)2310k e f m v ε=。
解:(1)由速率分布函数的归一化条件0()1f v dv ∞=⎰,有2401ffv v Av dv dv π∞+=⎰⎰,得3413fAv π=,所以常数 334fA v π=; (2)电子气中一个自由电子的平均动能为222521233()4225105ffv v e k e e f e ff m m v f v dv v Av dv Am v m v εππε==⋅===⎰⎰其中312f e f m v ε=,称做费米能级。
4.将1mol 温度为T 的水蒸气分解为同温度的氢气和氧气,试求氢气和氧气的热力学能(内能)之和比水蒸气的热力学能增加了多少?(所有气体分子均视为刚性分子)。
答案:34U RT ∆=。
解:1mol 理想气体的内能为2iU RT =,分解前水蒸气的内能为 16322i U RT RT RT ===1mol 的水蒸气可以分解为1mol 的氢气和0.5mol 的氧气,因为温度没有改变,所以分解后,氢气和氧气所具有的内能分别为2522i U RT RT == 和 31552224i U R T R T RT ν==⨯= 所以分解前后内能的增量为231553()()3244U U U U RT RT RT RT ∆=+-=+-=5.在半径为R 的球形容器里贮有分子有效直径为d 的气体,试求该容器中最多可以容纳多少个分子,才能使气体分子间不至于相碰?答案:220.47R N d==。
解:为使气体分子不相碰,则必须使得分子的平均自由程不小于容器的直径,即满足2R λ≥由分子的平均自由程λ=, 可得n =≤上式表明,为了使分子之间不相碰,容器中可容许的最大分子数密度为max n =因此在容积343V R π=的容器中,最多可容纳的分子数N 为23max 240.473R N n V R d π=⋅===。