当前位置:文档之家› 泛函分析课程论文

泛函分析课程论文

泛函分析课程论文数学与计算科学学院 09数本2班 黄丽萍 2009224725大四新学年开始了,我们也开始学习了一门综合性及专业性强的课程——泛函分析。

首先,理解下“泛函分析”这个概念。

泛函分析是20世纪发展起来的一门新学科,其中泛函是函数概念的推广,对比函数是数与数之间的对应关系,我们发现泛函是函数和数之间的对应关系。

在学习泛函分析前,我们先确定学习目标:理解和掌握“三大空间和三大定理”。

所以在接下来的两章内容的学习中,我们将先学习“两大空间”——度量空间和赋范线性空间及其相关知识(第七章和第八章)。

在学习中慢慢体味泛函分析的综合性及专业性。

第七章的标题已经明确给出了学习任务——度量空间和赋范线性空间。

§1 度量空间§1.1 定义:若X 是一个非空集合,:d X XR ⨯→是满足下面条件的实值函数,对于,x y X ∀∈,有(1)(,)0d x y =当且仅当xy =;(2)(,)(,)d x y d y x =;(3)(,)(,)(,)d x y d x z d y z ≤+,则称d 为X 上的度量,称(,)X d 为度量空间。

【理解】度量空间就是:集合+距离;(满足非负性、对称性及三点不等式) 其实度量空间是在实变函数中接触的知识,但其在泛函分析学科中的重要性,我们可以通过度量空间的进一步例子来感受。

§1.2 度量空间的进一步例子例:1、离散的度量空间(,)X d ,设X 是一个非空集合,,x y X ∀∈,当1,(,)0,=x y d x y x y≠⎧=⎨⎩当当。

2、序列空间S ,i =1i |-|1(,)21+|-|i i i i d x y ξηξη∞=∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t Ad x y x y ∈=是度量空间4、连续函数[a,b]C ,(,)max|(t)-(t)|a t bd x y x y ≤≤=是度量空间5、空间2l ,122=1(,)[(-)]k ki d x y y x ∞=∑是度量空间§1.3度量空间中的极限,稠密集,可分空间§1.3.1极限:类似数学分析定义极限,如果{}n x 是(,)X d 中点列,如果∃x X ∈,使n l im (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列,x 是点列{}n x 的极限。

同样的类似于n R ,度量空间中收敛点列的极限是唯一的。

§1.3.2稠密子集与可分空间:设X 是度量空间,E 和M 是X 中两个子集,令M M M ⊂表示的闭包,如果E ,那么称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 是可分空间。

即:{},n n M E x E x M s t x x n ⇔∀∈∃⊂→→∞在中稠密对 §1.3.3 例子1、 n 维欧氏空间n R 是可分空间;2、 坐标为有理数的全体是n R 的可数稠密子集;3、 l ∞是不可分空间。

§1.4 连续映射§1.4.1定义:设(,),(,),> 0,X (,) < (T ,T ) < ,o o oo X X d Y Y d T X Y x X d x x x d x x T x εδδε==∈ 是两个度量空间,是到中映射,如果对于任意给定的正数,存在正数 使对中一切满足 的 ,有 则称在连续。

§1.4.2 证明映射连续性的方法1、定义法2、邻域法:对o Tx 的每一个ε—邻域U,必有o x 的某个δ—邻域V 使TV U ⊂, 其中TV 表示V 在映射T 作用下的像。

3、极限观点(定理一):, T ()n o n o T x x x Tx n ⇔→→→∞连续 则4、定理二:度量空间X 到Y 中的映射T 是X 上连续映射 ⇔ Y 中任意开集M 的原像1T M -是X 中的开集。

5、定理二(变式):把“开集”改为“闭集”,定理二仍成立。

§1.4.3 例题例1、 设X,Y,Z 为三个度量空间,f 是X 到Y 中的连续映射,g 是Y 到Z的连续映射,证明复合映射()()=((x))gf x g f 是X 到Z 的连续映射。

证明:设G 是Z 中开集,因g 是Y 到Z 的连续映射,1g G -是Y 中开集, 又因f 是X 到Y 中的连续映射,-11()f g G -是X 中的开集, 即-1(g f)G 是X 中的开集,即(g f) 连续。

【分析】此题就是利用定理二来证明的。

§1.5 柯西点列和完备度量空间§1.5.1 定义:设(,)X X d =是度量空间,{}nx 是X 中点列,如果对0ε∀>,∃正整数()N N ε=,使当,n m N >时,必有(,)n m d x x ε<,则称{}n x 是X 中的柯西点列,如果度量空间(,)X d 中每个点列都在(,)X d 中收敛,那么称(,)X d 是完备的度量空间。

§1.5.2 相关结论1、Q 全体按绝对值距离构成的空间不完备2、柯西点列不一定收敛,但是度量空间中每一个收敛点列都是柯西点列3、柯西点列一定是有界点列4、定理:完备度量空间X 的子空间M 是完备空间的充要条件是M 为X 中的闭子空间。

(即完备性关于闭子空间具有可遗传性)【注意】开子空间不完备。

例:1、[a,b]C 是完备度量空间;2、2l 是完备度量空间;3、n R 是完备的度量空间;4、实系数多项式全体[,]P a b ,[,]P a b 作为[a,b]C 的子空间不是完备度量空间;§1.6 度量空间的完备化定理1 (度量空间的完备化定理):设(,)X X d =是度量空间,那么一定存在一完备度量空间(,)X X d = ,使X 与X的某个稠密子空间W 等距同构,并且X 在等距同构意义下是唯一的,即若(,)X d ∧∧也是一万倍度量空间,且X 与X 的某个稠密空间等距同构,则(,)X d ∧∧与(,)X d 等距同构。

(其中:若( , ) = ( , )d Tx Ty d x y ,称(,)X X d =与(,)X d 等距同构。

) 定理1可以通过图形象表达定理'1 :设(,)XX d =是度量空间,那么存在唯一的完备空间(,)X X d = ,使X 为X的稠密子空间。

§1.7压缩映射原理及其应用§1.7.1定义:设X 是度量空间,T 是X 到X 中的映射,如果,01αα∃<<,.s t ,x y X ∀∈,(,)(,)d Tx Ty d x y α≤,则称T 是压缩映射。

§1.7.2定理1(压缩映射定理)设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且只有一个不动点(就是说,方程Tx x =,有且只有一个解)。

定理2(隐函数存在定理)设函数(,)f x y 在带状域,a x b y ≤≤-∞<<∞中处处连续,且处处有关于y 的偏导数'(,)y f x y 。

如果∃常数m 和M ,满足'0(,),y m f x y M m M <≤≤<,则方程(,)0f x y =在区间[,]a b 上必有唯一的连续函数()y x ϕ=作为解:(,())0,[f x x x a bϕ≡∈ §1.8 线性空间 §1.8.1定义:设X 是一非空集合,在X 中定义了元素的加法运算和实数(或复数)与X 中元素的乘法运算,满足下列条件:(一)关于加法:(1)交换律(2)结合律(3)有零元(4)有负元,(二)关于数乘:(1)分配律(2)结合律(3)x X ∀∈,均有1x x =,满足这样性质的集合X 称为线性空间。

例:1、n R 按自身定义的加法和数乘成线性空间2、[a,b]C 按自身定义的加法和数乘成线性空间3、空间(0)p lp >按自身定义的加法和数乘成线性空间§2 赋范线性空间§2.1赋范线性空间和巴拿赫空间§2.1.1定义:设X 是实(或复)的线性空间,如果对x X ∀∈,都有确定的一个实数,记为x 与之对应,并且满足:1o0x ≥,且0x =等价于0x =;(非负性) 2o ||x x αα=其中α为任意实(复)数;3o ,,x y x y x y X +≤+∈,(三角不等式)则称x 为向量x 的范数,称X 按范数x 成为赋范线性空间。

注意:1、x 是x 的连续函数 2、||||0(,)0n n x x d x x -→⇔→ (诱导距离) §2.2重要结论:1、完备的赋范线性空间称为巴拿赫空间⇔X 是赋范线性空间,且{}n x 是柯西点列。

2、要判断一个空间是否为巴拿赫空间,有三点:(1)是否为线性空间 (2)是否为赋范线性空间 (3)是否完备3、任何有限维赋范线性空间都同维数欧氏空间拓扑同构,相同维数的有限维赋范线性空间彼此拓扑同构。

(即拓扑同构⇔范数等价)4、定理1: [,](1)p L a b p ≥按范数1(|()|)b p p p a f f t dt =⎰成赋范线性空间。

定理2:[,](1)p L a b p ≥是巴拿赫空间。

例题:1、n R 按范数x =2、空间[a,b]C 按范数max |()|a t b x x t ≤≤=成巴拿赫空间 3、空间p l 是巴拿赫空间区别与联系:1、任意赋范线性空间都是度量空间2、赋范线性空间是一种特殊的度量空间,当它完备时称之为巴拿赫空间。

第八章 有界线性算子和连续线性泛函§1 有界线性算子和线性泛函的定义§1.1定义:设X 和Y 是两个同为实(或复)的线性空间,D 是X 的线性子空间,T 为D 到Y 中的映射,如果对,x y D ∀∈及数α,有()T x y Tx Ty +=+,()T x Tx αα=,则称T 为D 到Y 中的线性算子,其D 称为T 的定义域,记为()D T ,TD 称为T 的值域,记为()R T ,当T 取值于实(或复)数域时,就称T 为实(或复)线性泛函。

例:相似算子、微分算子、乘法算子、积分算子都是线性算子【值得一提】1、在有限维空间上,当基选定后,线性算子与矩阵是相对应的;2、n 维线性空间上线性泛函与数组12(,,,)n ααα (向量)相对应。

定义:T 为赋范线性空间X 的子空间()D T 到赋范线性空间Y 中的线性算子,称0()sup x x D T Tx T x ≠∈=为算子T 在()D T 上的范数。

定理1: 设T 是赋范线性空间X 到赋范线性空间Y 中的线性算子,则T 为有界算子的充分必要条件是T 为X 上的连续算子。

相关主题