当前位置:文档之家› 电动自行车用铅酸蓄电池的运行状态分析

电动自行车用铅酸蓄电池的运行状态分析

电动自行车用铅酸蓄电池的运行状态分析一、前言电动自行车作为一类新型的交通工具,从上世纪九十年代中末开始在我国得以普遍使用,由于电动自行车具有轻便省力,安全,无噪声和无污染,充电方便,免交机动车各种费用及适用老人、妇女和儿童使用而越来越受到人们的喜爱,据统计至2005年我国市场保有量约为1600万辆,年需求蓄电池量约为6000万只(包括替换电池),产值约为50亿人民币。

进入2006年后电动自行车的需求量将大幅度的增长,估计到2006年底国内市场的保有量将达到2000万辆,蓄电池的需求量约为7500万只,产值约为60亿人民币。

二、电动自行车用铅酸蓄电池发展状况九十年代末使用的电动自行车用密封式铅酸蓄电池属滞后性产品,由于初期的电动自行车在选型配套的铅酸蓄电池产品时,国内电池业尚未开发这类动力型蓄电池,因此电动自行车生产厂商只能在原有的小型阀控制密封式铅酸蓄电池系列产品中筛选。

由于小型阀控密封式铅酸蓄电池主要是作为UPS、应急灯等备用电源使用,其使用状态为长时浮充短时放电状态,被选为电动自行车的动力源后,由于蓄电池的使用特性发生了较大的变化,因此,在许多功能上难已满足电动自行车的使用要求,当时选定的6-FM-12型小型阀控密封式铅酸蓄电池2h率放电容量只有8Ah左右,70%深放电循环次数实验室数据不足100次,续驶里程只有20km左右,使用寿命不足3个月。

所以最初的电动自行车由于电池的质量引发了诸多的的实际问题。

为了解决电动自行车用铅酸蓄电池存在的适用性问题,我国的电池业和众多有识之士坚持不懈的努力,在克服铅酸蓄电池固有弊病和主机定型产品尺寸困难的基础上,潜心产品内在结构,合金材料,铅膏工艺材料以及制造技术方面的研究和开发,使得电动自行车用铅酸蓄电池的功能特性不断地得到改善和提高。

因该说目前电动自行车用铅酸蓄电池的功能特性已基本上能满足电动自行车的使用要求,以下是一组对比数据:最初的电池目前的电池2h率容量:8Ah 2h率容量:12Ah—13.5Ah续驶里程:20-30km 续驶里程:45—55km循环次数(实验室):100次循环次数(实验室):500—700次实际使用期:3个月实际使用期:10-12个月重量比能量:24Wh/kg(C2)重量比能量:35—39Wh/kg(C2)铅酸蓄电池共有十七大类的产品,应该说电动自行车用蓄电池已汇集了各类产品的优点,特别是开发应用铅酸电池涂膏式正极板合金,结构,添加剂及制造技术方面在全球电池业也产生了积极的影响。

(一)、目前普遍使用的正板栅合金有以下2种:1、铅锑镉 Cd: 1.6~1.7%; Sb:1.6~1.7%2、铅钙锡铝 Ca: 0.06~0.09%; Sn:1.4~1.5%; Al:0.02~0.03%铅锑镉合金具有优良的耐深充深放循环能力,但耐腐蚀性相对差,锑转移降低负极析氢过电位且自放电相对大;铅钙合金具有优良的耐过充电能力,耐腐蚀性能强,析氢析氧过电位相对高,但由于“无锑效应”使得深充深放循环能力较差。

由于铅锑合金的腐蚀是树枝状晶间腐蚀与晶界腐蚀共存的腐蚀,锑的溶解使含锑板栅腐蚀层较厚,腐蚀产物内外层之间无明显界限,而是逐步过渡的,因此,锑对活性物质与板栅的结合起到了强化的作用,使得活性物质不易从板栅上脱落。

铅钙合金由于耐腐蚀相对好,腐蚀层不仅薄而且致密,且腐蚀程度不一,腐蚀层平行而分层,分为内外两层且内层由于内部的应力不能形成良好的接合,不但板栅与活性物质的结合力差而且会引发“无锑效应”。

“无锑效应”是指正极板栅腐蚀层与活性物质之间由于缺少类似吸附锑对PbO2成核作用而出现PbSO4结晶的积累形成致密阻挡层,阻碍活性物质参加反应的现象。

一些合金也应用于正板栅:1、铅锑镉砷 As: 0.2~0.3%2、铅锑镉铜砷 Cu: 0.03~0.04%3、铅钙锡铝铜 Cu: 0.2~0.3% 4、铅钙锡铝铋 Bi:0.02~0.03% 5、铅钙锡铝铈 6、铅钙锡铝+稀土元素 铜、铋、铈及稀土元素的加入主要是为了抑制“无锑效应”7、铅布另外一些新型板栅也在研究之中:1、铝板板栅2、形成式铅板栅(二)、普遍使用的正极添加剂1、红丹粉2、混合石墨----高纯石墨+乙炔黑3、羧甲基纤维素4、氧化铝5、硫酸镁6、发泡聚丙烯7、磷酸8、聚四氟乙烯乳液,(三)、制造过程的新型工艺参数1、超细铅粉 300目全过2、高含酸量的铅膏正膏:45~50g/kg ,负膏: 40~45g/kg3、高温和膏 60~70℃4、高视密度的铅膏正膏4.3~4.4g/cm3, 负膏4.5~4.6g/cm35、高温高湿固化 100%湿度70~80℃(最快的固化干燥36h,固化100%湿度80℃温度时间24h,干燥80~90℃时间12h)6、推进式极板化成制式根据铅膏物质的氧化电位和还原电位确定的充电波型。

7、高密度电解液 1.34~1.36g/cm3胶体电解质应于固型阀控密封式蓄电池可以缓解贫液式结构带来的六大方面的问题:热传导、电解液分层、汇流排腐蚀、酸量、极板局部硫化及干涸,但在电动自行车蓄电池中运用的特点目前还在进一步的确定中。

极板的压力不小于0.4kg/cm2,即保证隔板的压缩比在25%左右。

但压力不能太大,如果隔板压缩量太大则会导致电解液灌注困难而且枝晶生成的可能性(导致穿透)会大大增长。

(四)、普遍的电池结构主要有两种结构1、 2×3结构极板尺寸:(长×高) 44×70,40×70,42×68,40×69(厚度正※负) 6对7片: 3.1~3.2※2.1~2.27对8片: 2.5~2.6※1.7~1.8 8对9片: 1.7~1.8※1.5~1.62、 1×6结构极板尺寸:(长×高×厚)正板:(85~86)×(69~71)×(1.7~1.8)负板:(85~86)×(69~71)×(1.3~1.4)4对5片3、优化的板栅结构设计(1)、改善板栅栅格的几何形状,在考虑板栅重量的前题下尽量增加竖筋数量而减少横筋数量及按照电流在极板中的分布状况优化竖筋和横筋的等差设计(即上密下疏,左密右疏分布)。

因为在板栅中横向筋条的主要作用是支撑活性物质和汇集局部活性物质提供的电流,而竖筋的主要作是传导电流,而极板的电流是从下至上最后汇集到极耳,这一点从矩型板栅的电位分布图中可以看出,矩型板栅在以极耳为中心的相同径向距离上的电流分布极不均匀,从而导致在径向等位线上出现较大的欧姆压降,由此造成电能的不必要损失。

因此,增加竖筋减少横筋并使其按电流分布进行等差定位在不增加板栅重量和板栅吃膏量的前题下是有利于电能的输送的。

(2)、改善筋条几何形状,增加板栅的表面积由于活性物质的多孔性而具较大的表面积,而板栅的表面积相对活性物质来说要小的多,对正板来说板栅表面积只有活性物质约1/106,所以在充放电过程中通过板栅的电流密度要比通过活性物质的真实电流密度大的多,在大电流放电时在板栅与活性物质的界面上产生电压降很大,从而影响了电池的输出功率,为提高电池的输出功率,除采用薄型极板相对增大活性物质与板栅的接触面积外,板栅横、竖筋条的形状,特别是竖筋条的形状是很重要的因素。

目前极栅筋条采用的结构其截面形状一般有三角形、棱形、园形和椭园形,在保证活性物质用量的情况下采用椭园型的竖筋结构能保证板栅与活性物质有较大的接触表面积三、电动自行车用铅酸蓄电池运行的困扰1、自行车带来困扰(1)、电机功率增大问题在2000年前,国内电动自行车用铅酸蓄电池没有统一的技术标准,国际上也无此类电池的对应标准,当时大多参照上海技术监督局制定的电动自行车蓄电池的地方标准,,电池的型号沿用小型阀控密封式铅酸蓄电池的6-FM-12,而在小型阀控制密封式电池中12系指电池在20h率放电时容量为12Ah,而上海地方标准其主要技术指标是采用的5h放电率容量,实际上无论是20h放电率还是5h放电率都不适合电动自行车的实际使用情况,那么2000年在金华(绿源)召开了电动自行车用铅酸蓄电池的技术研讨及技术标准的制订会议,根据当时电动自行车的有关参数:1、36V电气系统2、电机功率180W(输入功率)3、最高时速20KM/小时4、续驶里程40KM5、最大负载量75KG6、电池寿命1年确定了电池的相应的主要技术指标1、放电率采用2h率放电(3,4)2、放电电流为5A(1,2)[实际工作电流5~6A(电机效率)]3、最大放电电流15A(5)4、充放(70%放电深度)循环350次(6)由此(1,2)确定了电动自行车用蓄电池的型号为6-DZM-10,即电池的容量为10Ah(2h率),即电池在25℃时以5A放电至电池终止电压,持续放电时间不低于120min,单对电池的容量来讲,当时6-FM-12电池经过对极板结构、正板铅膏的配方,电解液密度的适当调整,可达到要求.随着电动车的发展,种类增多,明显的是电机功率瓦数的增大,36V系统有180W、220W、250W及280W的电机,电池的正常工作电流为280/36=8A,48V系统有320W、350W电机,电池的正常工作电流为350/48=7.3A,超出了电池2h率放电范围,电池负荷增大引发了电池的一系列的问题。

2)、电机效率降低问题新车使用一段时间后电机的功率效率降低会引起电池工作电流的增大。

另外电机电驱动系统恶化,在超载能力差或效率特性差的情况下,如果一旦出现1—2次恶性使用,电机的永磁体就会出现退磁,效率特性全面恶化,导致电池工作电流急剧增加,放电时间急剧减少而使续行里程不足,顾客误认为蓄电池容量已经衰退。

(3)、电池状态显示问题由于电池是成组使用,而电池在制造过程中会受到电化学方面诸多的可控和不可控因素的影响,使得每只电池很难做到性能完全一致,因此,在蓄电池组的运行过程中总会出现单只电池特性滞后的现象,这种滞后如果及时的进行差补,电池组仍能正常的运行,否则电池组就会受到滞后电池的影响逐渐失去功效。

目前大多的电动自行车只有对电池组状态的显示,对单只电池状态无法明示而失去了对滞后电池差补的机会,造成了原本可以继续良好运行的电池组提前失去功效。

(4)、控制系统对电池放电深度的控制问题很多电池循环放充电的实验室数据很高,有的都可达到800次循环,但在实车使用中却有时连300次循环都达不到,这里固然有电池组一致性带来的问题,但自行车控制系统对电池放电深度的控制也是一个主要的原因,电池如果经常性的处于一种80%以上的放电深度状态,那么电池的循环放充电次数应会大大下降。

(5)、电池型号滥用问题应该说,从JB/T10262-2001标准实施以来,电动自行车电池的型号规格已基本定型为6-DZM-10,除了一部分小的电池企业由于认识问题仍然沿用6-DZM-12和部分小的用户按受6-DZM-12以外,在自行车行业已基本通用了6-DZM-10型号规格。

相关主题