基本定义理想溶液 ideal solution(s):溶液中的任一组分在全部浓度范围内都符合拉乌尔定律[1]的溶液称为理想溶液。
这是从宏观上对理想溶液的定义。
从分子模型上讲,各组分分子的大小及作用力,彼此相似,当一种组分的分子被另一种组分的分子取代时,没有能量的变化或空间结构的变化。
换言之,即当各组分混合成溶液时,没有热效应和体积的变化。
即这也可以作为理想溶液的定义。
除了光学异构体的混合物、同位素化合物的混合物、立体异构体的混合物以及紧邻同系物的混合物等可以(或近似地)算作理想溶液外,一般溶液大都不具有理想溶液的性质。
但是因为理想溶液所服从的规律较简单,并且实际上,许多溶液在一定的浓度区间的某些性质常表现得很像理想溶液,所以引入理想溶液的概念,不仅在理论上有价值,而且也有实际意义。
以后可以看到,只要对从理想溶液所得到的公式作一些修正,就能用之于实际溶液。
各组成物质在全部浓度范围内都服从拉乌尔定律的溶液。
[2]对于理想溶液,拉乌尔定律与亨利定律反映的就是同一客观规律。
其微观模型是溶液中各物质分子的大小及各种分子间力(如由A、B二物质组成的溶液,即为A-A、B-B及A-B 间的作用力)的大小与性质相同。
由此可推断:几种物质经等温等压混合为理想溶液,将无热效应,且混合前后总体积不变。
这一结论也可由热力学推导出来。
理想溶液在理论上占有重要位臵,有关它的平衡性质与规律是多组分体系热力学的基础。
在实际工作中,对稀溶液可用理想溶液的性质与规律作各种近似计算。
泡点:液体混合物处于某压力下开始沸腾的温度,称为在这压力下的泡点。
若不特别注明压力的大小,则常常表示在0.101325MPa下的泡点。
泡点随液体组成而改变。
对于纯化合物,泡点也就是在某压力下的沸点。
一定组成的液体,在恒压下加热的过程中,出现第一个气泡时的温度,也就是一定组成的液体在一定压力下与蒸气达到汽液平衡时的温度。
泡点随液相组成和压力而变。
当泡点与液相组成的关系中,出现极小值或极大值时,这极值温度相应称为最低恒沸点或最高恒沸点,这时,汽相与液相组成相同,相应的混合物称为恒沸混合物。
汽液平衡时,液相的泡点即为汽相的露点。
在石油天然气工程中(见《油层物理》何更生著,P72),泡点的定义如下:泡点:在温度一定的情况下,开始从液相中分离出第一批气泡的压力,或在压力一定的情况下,开始从液相中分离出第一批气泡的温度。
沸点:沸点是指物质沸腾时的温度,更严格的定义是液体成为气体的温度。
液体在未达到沸点温度时也会通过挥发变成气体。
然而,挥发是一种液体表面的现象,也就是说只有液体表面的分子才会挥发。
沸腾则是在液体的整个部分发生的变化,处于沸点的液体的所有分子都会蒸发,不断地产生气泡。
沸点和当水汽压力与环境压力相等时的温度有关,也就是说,沸点和气压是有关的。
通常情况下我们所说的沸点都是在标准大气压下测量得到的(即101325帕斯卡,或1atm)。
在海拔较高的地区,由于气压较低,沸点也相对低得多。
当气压上升,物体的沸点相应上升,达到临界点时,物体的液态和气态相一致。
物体的沸点不可能提高到临界点以上。
反之,当气压下降,物体的沸点相应下降,直至三相点,类似地,物体的沸点不能降低到三相点以下。
物体从液态转化成气态的过程需要一定的热量,名为气化潜热。
给处于沸点的物体不断加热,整个过程中施加的所有热量都会被气化的物体分子带走,所以物体的温度不会由于被加热而上升。
正因如此,物体处于沸点时的比热实际上是无穷的(参见:气化比潜热)。
根据分子间相互作用理论,沸点表现了液体分子吸收足够的能量克服液态分子之间的各种相互作用。
所以,沸点也可以作为这些相互作用力的大小的指标。
标准大气压下水的沸点是摄氏100度(华氏212度)。
在世界最高峰珠穆朗玛峰上,大气压力为260 mb,水的沸点是69摄氏度,因此会出现水滚了却未能把食物煮熟的情况。
露点:露点:在温度一定的情况下,开始从气相中分离出第一批液滴的压力,或在压力一定的情况下,开始从气相中分离出第一批液滴的温度。
传质过程基础石油加工化工过程生产中所处理的原料、中间产物和粗产品等几乎都是由若干组分组成的混合物,而且其中大部分是均相物系。
对于均相物系,必须要造成一个两相物系,才能将均相混合物分离,并且是根据物系中不同组分间某种物性的差异,使其中某个组分或者某些组分从一相向另一相转移以达到分离的目的。
通常将物质在相间的转移过程成为传质过程或分离操作。
传质的基本方式:对流传质:通常指运动流体与固体壁面(或两股直接接触的流体之间)间的质量传递,是相际传质的基础。
依靠流体微团宏观运动所进行的质量传递。
一般也包括分子扩散对传质的作用。
由于传质设备中和反应器中的流体总是流动的,所以对流传质成为质量传递的最重要方式。
类型根据质量传递的范围,对流传质可分为:①单相对流传质。
质量传递仅在运动流体的一相(气相或液相)中发生。
根据流体运动的原因,又分为自然对流传质和强制对流传质,前者一般不很重要,后者按流体运动状态还可分为层流对流传质和湍流对流传质。
②相际对流传质。
质量传递发生于两相间,这是化工生产中均相混合物分离操作时最常见的情况,如在蒸馏、吸收、萃取等单元操作中。
在非均相反应器中,相际传质也起着重要作用。
机理当某组分在流动流体与接触的固体表面之间发生传递时(如固体的升华,固体表面水分的汽化),表面附近的浓度边界层和流动边界层中流体的流动状态对传质产生决定性的影响。
当边界层中的流动完全处于层流状态时,质量传递只能通过分子扩散,但流动增大了浓度梯度,强化了传质。
当边界层中的流动处于湍流状态时,表面附近的流动结构包括湍流区、过渡区和层流底层。
在湍流区内的质量传递主要依靠湍流脉动造成流体剧烈混合,在层流底层则仍靠分子扩散,但由于流体主体的浓度分布被均化,层流底层的浓度梯度增大,因而湍流有效地强化了传质。
当质量传递发生在相互接触的两流体相之间时,各相主体与相界面间的传质仍是决定性的步骤。
由于两流动流体相界面处的情况十分复杂,因此对于这种传质了解甚少。
目前,只有一些简化模型直接用来描述两流体相间的相际传质。
扩散传质:在不流动介质(停滞介质)或固体中由于分子扩散引起的质量传递。
分子扩散传质的机理与导热类似,二者均由于分子的无规则运动而发生能量或质量的传递。
传质过程的分类:按物理化学原理,工业常用的传质分离操作可分为平衡分离过程和速率分离过程两大类:1、平衡分离过程借助分离媒介(如热能、溶剂和吸附剂),使均相混合物系统变成两相系统,再以混合物中各组分在处于相平衡的两相中不等同的分配为依据而实现分离。
根据两相的状态可分为:①气(汽)液传质过程,如蒸馏、吸收等;②液液传质过程,如萃取;③气(汽)固传质过程,如吸附、色层分离、参数泵分离等;④液固传质过程,如浸取、吸附、离子交换、色层分离、参数泵分离等。
平衡时组分在两相中的浓度关系,可以用相平衡比(或分配系数)Ki表示:式中yi和xi分别表示组分i在两相中的浓度。
对于x和y相的命名,按习惯把吸收、蒸馏中的气相或汽相称为y相,把萃取中的萃取液作为y相。
一般说,相平衡比取决于两相的特性以及物系的温度和压力。
i和j两个组分的相平衡比Ki 和Kj之比值称为分离因子αij:在某些传质分离过程中,分离因子往往又有专门名称。
例如:在蒸馏中称为相对挥发度;在萃取中称为选择性系数。
一般将数值大的相平衡比Ki作分子,故αij大于1。
只要两组分的相平衡比不相等(即αij≠1),便可采用平衡分离过程加以分离,αij越大就越容易分离。
大多数系统的相平衡比和分离因子都不大,一次接触平衡所能达到的分离效果很有限,需要采取多级逆流操作来提高分离效果。
为适应各种不同的系统以及操作条件和分离要求,要相应地使用多种不同类型的传质设备。
2、速率分离过程在某种推动力(浓度差、压力差、温度差、电位差等)的作用下,有时在选择性透过膜的配合下,利用各组分扩散速度的差异实现组分的分离。
这类过程所处理的原料和产品通常属于同一相态,仅有组成上的差别。
速率分离方法可分为:①膜分离,如超过滤、反渗透、渗析和电渗析等。
②场分离,如电泳、热扩散、超速离心分离等。
膜分离与场分离的区别是:前者用膜分隔两股流体,后者则是不分流的。
不同类型的速率分离过程,分别应用不同的设备,并采用不同的方法进行设计计算和操作控制。
吸收气体的减湿液-液萃取固-液萃取结晶吸附干燥精馏雾沫夹带雾沫夹带是指随着塔压的提高,物料被带到上一块塔板。
如雾沫夹带量百分之十时塔顶重组分浓度升高,塔压变大。
性质:雾沫夹带指塔板上的液体以雾滴形态被气流夹带到上一塔板的现象,也包括液滴被气流带出设备(如蒸发器)等。
塔板上的雾沫夹带会造成液相在板间的返混,将减小传质推动力而降低板效率。
严重时还会造成液泛,故对夹带量有一定的限制。
通常要求雾沫夹带量ev<0.1。
影响夹带量大小的主要因素是气速和分离空间,对筛板有Hunt等人得出的经验式:σ为表面张力,dyn/cm;HT为塔板间距,m;hf为泡沫层高,m,取为清液层高的 2.5倍;WG=Vs/(AT-Af)为液层上的气速,m/s;Vs为气体流量,m3/s;AT为塔截面,m2;Af为降液管截面,m2。
上式适用于WG/(HT-hf)<12之时。
对其他类型的塔板亦分别有其相应的经验计算法。
显然,雾沫夹带的产生会降低传质效率。
为了保持较高的传质效率,我们通常控制雾沫夹带量e(以公斤/公斤蒸气计)大于10%,与此相应的气速即为负荷上限。
当观察分析塔板上气、液接触情况发现,至气体在液层中鼓泡,气泡不断地形成和破裂过程中所产生的大量液沫、以不同初速被抛溅到液层上方空间的某一高度,然后大液滴很快落回液层,而小液滴随气流上升,在上升过程中还回有部分小液滴由于互相碰撞而合并聚结成较大的液滴落回流层,一部分小液滴被气流夹带至上层塔板。
液滴在气流中受力和运动状况是相当复杂的。
当空塔气速大于液滴的沉降速度时,液滴就被带出。
液滴抛溅的垂直高度愈高、量愈大,拟造成雾沫夹带的可能性就愈大。
原理:上升气流以雾沫的形式带走液体的现象。
通常指板式塔中塔板上的液体被上升气体(或蒸气)带往上一块塔板。
当气体自下而上穿过塔板上的液层时,液体在气流的作用下生成了雾滴。
在气流上升过程中,较大的液滴在重力作用下返回液层,较小的雾沫被气(汽)流带至上层塔板。
雾沫夹带造成液体在塔板间的返混,从而使分离效率下降。
雾沫夹带的程度,常用雾沫夹带量(每kg气体夹带的液体kg数)或雾沫夹带分率〔雾沫夹带量/(液流量+雾沫夹带量)〕表示,它主要与气体流速、液气比、气液密度、表面张力、塔板结构、塔板间距,及液层高度等因素有关。
物系和塔板结构一定时,板间距对雾沫夹带量影响很大。
在设计板式塔时,必须对气速、板间距和板效率三者作综合考虑,将雾沫夹带量控制在规定限度内。