当前位置:文档之家› 浅谈分块矩阵的性质及应用

浅谈分块矩阵的性质及应用

浅谈分块矩阵的性质及应用摘要:本文主要谈及分快矩阵的思想在线性代数的证明。

解线性方程组,矩阵得知逆及矩阵的逆,和初等变换中的应用。

关键词:分块矩阵;线性方程组;矩阵的秩及矩阵的逆;初等变换On the nature of block matrix and its applicationAbstract: this thesis uses the blocking matrix method into proving and applying the linear algebra, tries to solve the linear equations, and the proof of other relative matrix rank and elementary matrix.Key word s: Block matrix; Linear algebra; rank of matrix; elementary matrix.前言:矩阵得分快是处理问题的一重要方法,把一个告诫矩阵分成若干个地界矩阵,在运算中把低阶矩阵当作数一样处理,这样高阶矩阵就化作低阶矩阵,长能使我们迅速接近问题的本质,从而达到解决问题的目的,使解题更简洁,思路更开阔,因此本文主要谈及分块矩阵再求行列式的值,解线性方程组,求矩阵的秩及逆等方面的应用。

1.预备知识:分块矩阵的定义:将分块矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为 A的子块,一子块为元素的形式上的矩阵成为分块矩阵。

分块矩阵的运算:1.2.1分块矩阵的加法:设分块矩阵 A 与 B 的行数相同,列数相同,采用相同的得分块法,有A=1111n m mn A A AA ⎛⎫ ⎪ ⎪ ⎪⎝⎭K M O M L,1111n m mn B B B B B ⎛⎫⎪= ⎪ ⎪⎝⎭K M OM L其中ij A 与ij B 的行数相同,列数相同,那么A+B=111111111n n m m n mn A B A B A B A B ++⎛⎫⎪⎪ ⎪++⎝⎭KM O M L1.2.2分块矩阵与数的乘法:A=1111n m mn A A AA ⎛⎫⎪ ⎪ ⎪⎝⎭KM O M L,1111n m mn A A A A A λλλλλ⎛⎫⎪= ⎪ ⎪⎝⎭K M OM L1.2.3设A 为m l ⨯矩阵,B 为l n ⨯矩阵,分块成11111111t r s st t tr A A B B A B A A B B ⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭KK M OM M OM L L 其中1i A ,2i A ……,it A 的列数分别等于1j B ,2j B ……,tj B 的行数,那么1111r s sr C C AB C C ⎛⎫⎪= ⎪ ⎪⎝⎭KM OM L ,其中1tij ik ik k C A B ==∑(i=1……s ;j=1,……,r)1.2.4设1111t s st A A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭KM OM L ,则1111T T t T T T s st A A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭K M OM L 2. 分块矩阵的性质及应用:分块矩阵的性质:设A 为n 阶矩阵,若A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即A=100n A A ⎛⎫ ⎪⎪ ⎪⎝⎭O ,其中i A (i=1,2……,s )都是方阵,那么称A 为分块对角矩阵,分块矩阵的行列式一般据有下列性质12s A A A A =L ,由此性质可知,若i A ≠0(1,2i s =L )则A 0≠,并有 111100s A A A ---⎛⎫⎪= ⎪⎪⎝⎭L M OM L例:设A=500031021⎛⎫ ⎪⎪ ⎪⎝⎭ 求1A -解:500031021A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=1100A A ⎛⎫ ⎪⎝⎭,其中()11115,5A A -⎛⎫== ⎪⎝⎭,23121A ⎛⎫= ⎪⎝⎭,121123A --⎛⎫= ⎪-⎝⎭,所以11005011023A -⎛⎫⎪ ⎪=- ⎪ ⎪- ⎪⎝⎭ 2.2 将分块矩阵与初等变换结合在矩阵运算及球逆矩阵中具有重要作用:现将某个单位矩阵如下进行分块:00mn EE ⎛⎫⎪⎝⎭对其进行行(列)对换等作用,可得到如下类型一些矩阵:0000,,,,0000n m mmm n n n E P E P E E E E E P E P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭用这些矩阵左乘或右乘任一个分块矩阵A B C D ⎛⎫⎪⎝⎭,只要分块乘法能够进行,其结果就是对它进行相应的变换,如0mn EA B A B PE C D C PA D PB ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪++⎝⎭⎝⎭⎝⎭,适当选择P 可使C PA +=0,例如A 可逆时,选1P CA -=-则0C PA +=,于是上式的右端可成为10A B D CA B -⎛⎫⎪-⎝⎭,其在求逆矩阵方面是非常有用的,例1:0A T C D ⎛⎫= ⎪⎝⎭,A D 可逆,求1T -解:由10000mn E A A CAE C D D -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭及1110000A A D D ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭易知11100A TD ---⎛⎫= ⎪⎝⎭10m n E CAE -⎛⎫ ⎪-⎝⎭=11110A D CA D ----⎛⎫⎪-⎝⎭例2:1A B T C D ⎛⎫=⎪⎝⎭,设T 可逆,D 可逆,试证11()A BD C ---存在,并求11T - 解:由10mn A B EBD C D E -⎛⎫-⎛⎫ ⎪ ⎪⎝⎭⎝⎭10A BD CC D -⎛⎫-= ⎪⎝⎭,而又端仍可逆故11()A BD C ---存在再由上题例1可知11111111()0()A BD C TD C A BD C D -------⎛⎫-= ⎪--⎝⎭10m nE BD E -⎛⎫- ⎪⎝⎭=111111111111()()()()m m A BD C E A BD C BD D C A BD C E D C A BD C BD D ------------⎛⎫---= ⎪---+⎝⎭2.3分块矩阵在证明关于矩阵乘积的秩的定理中的作用:例:设A 是数域P 上n m ⨯矩阵,B 是数域P m s ⨯上矩阵,于是秩(AB)min ≤秩(A),秩(B),即乘积的秩不超过各因子的秩证明:只需证明秩()AB ≤秩()B ,同时秩()AB ≤秩()A ,分别证明这两个不等式设1112121222123m m n n n a a a a a a A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭L L M M O M L,111212122212s s m m ms b b b b b b B b b b ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭LL M M O M L令12,,,m B B B L 表示B的行向量(即对B进行分块)12,,,n C C C L 表示AB 的行向量,由计算可知,i C 的第j 个分量和1122i i im m a B a B a B +++L 的第j 的分量都等于1mik kjk ab =∑,因而()11221,2,,i i i im m C a B a B a B i n =+++=L L 即矩阵AB 的行向量组12,,,n C C C L 可经由B 的行向量组线性表示出所以AB 的秩不能超过B 的秩,即秩()AB ≤秩()B同样,令12,,,m A A A L 表示A 的列向量,12,,,s D D D L 表示AB 的列向量,由计算可知,()11221,2,,i i i mi m D b A b A b A i s =+++=L L 这个式子表明,矩阵AB 的列向量组可由矩阵A 的列向量组线性表示出,因而前者的秩不仅\可能超过后者的秩,这就是说秩()AB ≤秩()A(注:在此证明中用分块矩阵的方法,即12m B B B B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M 这就是B 的一种分块,按分块相乘就有111122121122221122m m m m n n nm m a B a B a B a B a B a B AB a B a B a B +++⎛⎫ ⎪+++ ⎪= ⎪ ⎪+++⎝⎭L L M L 很容易看出AB 的行向量是B 的行向量的线性组合) 2.4 分块矩阵在线性方程组方面的应用对于线性方程组11112211211222221112n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L 记()ij A a =,12n x x X x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ,12m b b b b ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭M ,11121112n m m mn m a a a b B a a a b ⎛⎫⎪= ⎪ ⎪⎝⎭L M M M M M L ,A 为系数矩阵,X 为未知向量,b 为常数项向量,B 为增广矩阵按分块矩阵记法可记为()B A b =M 或(),B A b =此方程也可记为AX b =,把系数矩阵A 按行分成m 块,则AX b =可记做12m A A A ⎛⎫⎪⎪ ⎪⎪⎝⎭M X =12m b b b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭M 把系数矩阵A 按列分成n 块,则与相乘的X 对应按行分成n 块,记作()12,,,n αααL 12n x x x ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭M b =,即1122n n x x x b ααα+++=L ,其都为线性方程组的各种变形形式,在求解过程中变形以更方便快捷例:利用分块矩阵证明克拉默法则:对于n 个变量n 个方程线性方程组11112211211222221112n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L 如果他的系数行列式0D ≠,则它有唯一解,即()()1122111,2,,j j j j n nj x D b A b A b A j n D D==+++=L L证明把方程组改写成矩阵方程AX b =,这里()ijn nA a ⨯=为n 阶矩阵,因0A D =≠,故1A -存在,令1X A b -=,有1AX AA b -=表明1X A b -=是方程组的解向量,由Ax b = ,有11A AX A b --= ,即1X A b -=,根据逆矩阵的唯一性,知1X A b -=是方程的唯一解向量,由逆矩阵公式11A A A-*=,有11x A b A b D-*==即111211111122112122222112222212112211n n n n n n n n n nn n n nn nn x A A A b b A b A b A x A A A b b A b A b A D D x A A A b b A b A b A +++⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪+++ ⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭L L L L M M M M M M L L L L L L L 即()()1122111,2,,j j j n nj j x b A b A b A D j n D D=+++==L L结束语:矩阵得分快不算是一个抽象的概念,我们能够清楚的了解知道并掌握它的概念及性质,进而能够灵活的运用,这样对我们今后的学习与研究都会有很大的帮助。

相关主题