毕业论文文献综述数学与应用数学 分块矩阵的应用研究一、前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关主题争论焦点)本论文的重要目的是通过查阅各种相关文献,寻找各种相关信息,来研究分块矩阵的计算方法和分块矩阵在化简行列式、行列式运算、求矩阵的特征值等方面的应用,首先我们先来介绍一些概念:分块矩阵的概念[]1:当矩阵的行数与列数较大时, 为便于运算, 有时把它分成若干个小块, 每个小块是行数与列数较小的矩阵.把一个矩阵看作是由一些小块矩阵所构成, 这就是矩阵的分块.构成分块矩阵的每个小矩阵, 称为子块.如对矩阵A 分块如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1011012100100001A 其中记⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=1121,0000,10011A O E ,则A 可表示为分块矩阵⎥⎦⎤⎢⎣⎡=E A O E A 1 矩阵的分块可以有各种不同的分法.如矩阵A 也可分块如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1011012100100001A 通过分块矩阵的定义和概念,我们将探讨分块矩阵的计算,并利用分块矩阵的思想把分块矩阵的应用联系到其它问题中.二、主题部分(阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述)作为解决线性方程的工具,矩阵已有不短的历史.拉丁方阵和幻方在史前年代已有人研究.矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的.但是追根溯源,矩阵最早出现在我国的<九章算术>中,在<九章算术>方程一章中,就提出了解线性方程各项的系数、常数按顺序排列成一个长方形的形状.随后移动处筹,就可以求出这个方程的解.在欧洲,运用这种方法来解线性方程组,比我国要晚2000多年.1693年,微积分的发现者之一戈特弗里德•威廉•莱布尼茨建立了行列式论(theory of determinants).1750年,加布里尔•克拉默其后又定下了克拉默法则.1800年,高斯和威廉•若尔当建立了高斯—若尔当消去法.1848年詹姆斯•约瑟夫•西尔维斯特首先创出matrix 一词.研究过矩阵论的著名数学家有凯莱、威廉•卢云•哈密顿、格拉斯曼、弗罗贝尼乌斯和冯•诺伊曼.分块矩阵的引进使得矩阵这一工具的使用更加便利,解决问题的作用更强有力,其应用也就更广泛.在矩阵的某些运算中,对于级数比较高的矩阵,常采用分块的方法将一个矩阵分割成若干个小矩阵,在运算过程中将小矩阵看成元素来处理,对问题的解决往往起到简化的作用.本文通过一些例子来说明分块矩阵的一些应用.预备知识[][]32-分块矩阵的运算: 矩阵的分块技巧性较强,要根据不通的问题进行不同的分块,常见的方法有四种:(1)列向量分法),,2,1(),,,,(21n i a a a a A i n ΛΛ==为A 的列向量.(2)行向量分发),,2,1(21n i A i n ΛM =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ββββ为A 的行向量.(3)分成两块),,(21A A A =其中21,A A 分别为B 的若干行.(4)分成四块⎥⎦⎤⎢⎣⎡=4321C C C C A 对分块矩阵可以进行广义初等变换,广义初等变换分为三种: (1) 交换分块阵的两行(或列);(2) 用一可逆矩阵乘以分块矩阵的某一行(或列); (3) 用某一矩阵乘以某一行(或列)加到另一行(或列). 根据广义初等变换的类型对应三种广义初等阵(1)⎥⎦⎤⎢⎣⎡00nm E E ; (2)G D G E E D ,,00,00⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡均为可逆阵; (3)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡E H E E ME,0. 分块矩阵的加法计算B A +时,若对AB 分块,则要求用子块表出的AB 应同型且对应位置的子块也应同型.如对矩阵A 分块为⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=E C O E A 1011012100100001则对B 也应予以同型的分块⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=E G O D B 1026013600020021从而按分块相加,有⎥⎦⎤⎢⎣⎡+=+O G C D E B A由于⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+122202211001D E 因此⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=+0026003642123122B A 分块矩阵的乘法计算AB 时,若对B A ,分块,则要求用子块表出的A 的列数等于用子块表出的B 的行数且对应的子块ij A 与pq B 应满足.p j =如对矩阵A 分块如下:⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=E CO E A 1011012100100001可对B 分块如下:⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=E G O D B 1026013600020021则有⎥⎦⎤⎢⎣⎡--+=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡-=E GC CGDE G O D E O C E AB 由于⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+238125263642310221CG D 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=102601364223831125AB 分块矩阵在矩阵中是一块重要内容,它是解决许多实际问题的提供方法,下面介绍个分块矩阵在解决线性代数问题中的一些简单应用[][]153-1. 用分块矩阵解决行列式问题在线性代数中,分块矩阵是一个十分重要的概念,它可以使矩阵的表示简单明了,使矩阵的运算得以简化. 而且还可以利用分块矩阵解决某些行列式的计算问题. 而事实上,利用分块矩阵方法计算行列式,时常会使行列式的计算变得简单,并能收到意想不到的效果.这里给出利用分块矩阵计算行列式的几种方法.引理1:设x ,y 为任意矩阵,则⎥⎦⎤⎢⎣⎡p mI x I 0与⎥⎦⎤⎢⎣⎡p mI y I 0都可分解为第三类初等矩阵的乘积.(即对单位矩阵仅仅施行第三类初等变换就可使它的右上角或左下角变成给定的任何矩阵).证明:任取)(max ij y y =,把单位矩阵⎥⎦⎤⎢⎣⎡=p mI I I 00的第一列的11y 倍,第2列的21y 倍,……第m 列的1m y 倍,都加到第1+m 列上去;这时,I 的右上角第一列变化成y 的第一列.这相当于对单位矩阵作了m 次第三类列的初等变换.类似地,m 次列的第三类初等列变换,可使I 的右上角第二列化为y 的第二列,……因此⎥⎥⎦⎤⎢⎢⎣⎡=p mm I y I Q Q IQ 021Λ. 定理1(拉普拉斯定理):设在行列式D 中任意取定了()11-≤≤n k k 行,由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积之和等于行列式D .定理2 设B A ,都是n 阶矩阵,则B A AB =证:由于⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-000n n nn I AB AI B I B I A,由引理⎥⎦⎤⎢⎣⎡n nI B I 0可分解为第三类初等矩阵的乘积.因此,用它右乘一个矩阵M ,相当于对M 进行一系列的第三类初等列变换.从而不改变M 的值.所以0nnI AB A BI A -=-两边均对后n 列用拉普拉斯定理,得左边==B A 右边AB I AB n nn n =--=++++++)()1(2)1()21(ΛΛ.例1 求证:()n n nnβαβαβααααβββ+++-=ΛΛΛΛΛΛΛΛΛΛ22112121010010001证明:由于⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡B A B BA I I I AB B A I I I 000由引理和拉普拉斯定理,两边取得列式,得B A B A A B B A -+=⎥⎦⎤⎢⎣⎡. 例2 计算下面2n 阶行列式()02≠=a bcb c d a da H n ON N O解 令.,,,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=d dD c c C b bB a aA O O O O 为n 阶方阵.由于0≠a ,故A 为可逆方阵.又易知⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=-----d ca b dca b d ca b D CA B 1111O从而得出()().112nnn n cd ab d ca b a D CA B A B C D A H -=-=-⋅=⎥⎦⎤⎢⎣⎡=--2. 利用矩阵分块的方法求逆矩阵求矩阵的逆矩阵可以用伴随矩阵或初等变换的方法来解决, 而此类方法对于级数较高的矩阵运算量较大, 对某些矩阵可以适当分块后再进行运算, 可起到事半功倍的作用.例3 设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=6000004000001001095201473M ,求1-M .解:令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=600040001,000000,109014,3275D C B A 则很容易求得,,61000410001,327511⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--=--D A且.21211967454361000410001109014327511⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡--⋅⎥⎦⎤⎢⎣⎡---=---BD A .610000041000001002121193267454375011111⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-------=⎥⎦⎤⎢⎣⎡-=∴-----D BD A A M例4:求矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0043000020000045300021000M 的逆矩阵.解:设.000000,430020004,5321,000000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=D C B A则,4183002100041,13251⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--=-C B 由定理可得,.001300025418300002100000410000111⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡=---BC M 3. 用分块矩阵求解非齐次线性方程组在线性代数中,我们知道:如果A 是一个n 阶非奇异阵(),,,3,2,1,,n j i a A ij Λ==将A进行分块,22211211⎥⎦⎤⎢⎣⎡=A A A A A 其中22211211,,,A A A A 分别是k m m k k k ⨯⨯⨯,,和m m ⨯矩阵.若22A 是非奇异方阵,那么一定可以找到一个上三角分块矩阵,012212⎥⎦⎤⎢⎣⎡-=-m kI A A IM 使得,02221⎥⎦⎤⎢⎣⎡=A AG MA 其中,211221211A A A A G --=且G 是非奇异阵.对于该结论,如果用来求解n 个方程的非齐次线性方程组是比较方便的.可按如下过程求解:设非齐次线性方程组为:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛ22112222212111212111 (1) 将(1)式写成矩阵方程为B AX = (2)这里A 为系数矩阵.,2121⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n b b b B x x x X M M 若A 是非奇异阵,即,0≠A 则方程组(1)有唯一确定的解. 将阶阵A 分块:,22211211⎥⎦⎤⎢⎣⎡=A A A A A 并注意22A 是非奇异阶阵,同时将X 及B 进行相应的分块.可令:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121,B B B X X X ,1B 的行数等于1211,A A 的行数,2B 的行数等于1211,A A 的行数.则矩形方程(2)可写成⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡212122211211B B X X A A A A (3) 将(3)式两端分别左乘上三角分块矩阵,012212⎥⎦⎤⎢⎣⎡-=-m kI A A IM 有⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-21221212122210B A A B X X A A G(4)其中211221211A A A A G --= ()0≠G .方程(4)分解成以下两个矩阵方程⎩⎨⎧=+-=-22221211221211B X A X A A A B GX (5)因()0≠G ,故(),212212111B A A B G X ---=再将1X 代入2222121B X A X A =+中,得.1212222X A B X A -= ().12121222X A B A X -=-由此,得.21⎥⎦⎤⎢⎣⎡=X X X例5 已知,82593122⎥⎦⎤⎢⎣⎡--=A 求一个24⨯的矩阵B ,使得0=AB ,并且秩()2=B 解:我们把矩阵B 按列分块()21,B B B ,由0=AB 即是()0,21=B B A 所以B 的每一列即是0=AX 的解,又因为秩()2=B ,所以21,B B 线性无关 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎦⎤⎢⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--81185102321112112540232111825923211182593122⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→8118510818101 所以⎪⎩⎪⎨⎧+=-=432431811858181x x x x x x (43,x x 为自由未知量)现分别令1,043==x x 及0,143==x x 得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=018581,108118121X X 事实上21,X X 就是0=AX 方程组的基础解系,显然21,X X 线性无关.故我们方可令2211,X B X B ==,所以()⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--==0110858118181,21B B B例6 求解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-+---=-+++=-+-+=+-+--=-+-+332224343238243214225432154321543215432154321x x x x x x x x x x x x x x x x x x x x x x x x x解 将方程写成矩阵方程,并进行分块,有.212122211211⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡B B X X A A A A 这里.321224121,113413,243142,122122211211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-=A A A A 先求出22A 的逆矩阵.21021101101211035121122⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=-A 计算.10351252102512212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=--A A 将方程(2)两段左乘以矩阵,03122122⎥⎦⎤⎢⎣⎡-=-I A A IM 得到:.32358410321112243412113000565420001654321⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------x x x x x 解矩阵方程 .21245144113413323,144584105654216,584105654216121212121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡-⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡---X A B x x x x 所以().137421245210211011012110351211212122543⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-X A B A x x x 所求方程组的解为.13,7,4,14,454321==-=-==x x x x x4. 用分块矩阵证明秩的问题例7 设A,B 分别是p n n m ⨯⨯,的矩阵,则()()(){}B r A r AB r m in ≤矩阵乘积的秩不超过各因子矩阵的秩.证明:先证()()B r B A r ≤⋅.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=mn ma in i n a L a L L La L a L L L a L a A 1111 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=m i B M B M B B 1 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=m i C M C M C AB 1 其中n B B ,,1Λ分别表示B 的1,2,…,n 行,n C C ,,1Λ分别表示AB 的1,2,…,m 行,由分块矩阵乘法性质得()m L i B a C nj iij i ,,11==∑=,即AB 的行向量组可由B 的行向量组线性表示,在高等代数中我们知道如果向量组r i a a ,,Λ可以经向量组i i b b ,,Λ线性表出,则()()i r b L b r a L a r ,,,,11≤,所以()()B r AB r ≤.再证()()A r AB r ≤设(),,,,,1111121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==np nj n p j n n L b L b L L L L Lb L b L b B A A A A Λ ()p j D D D AB ΛΛ1=则由分块矩阵乘法规则可得()∑===ni i j p L j A b D 1,,2,1即AB的行向量组可由A 的列向量线性表出,所以()()A r AB r ≤由此得()()(){}.,m in B r A r B A r ≤⋅三、总结部分(将全文主题进行扼要总结,提出自己的见解并对进一步的发展方向做出预测)本论文论述了分块矩阵的概念,分析了分块矩阵的性质,讨论了分块矩阵的应用问题.最后对分块矩阵的重点、难点进行归纳,给出恰当的例子.本论文重点是研究分块矩阵的应用问题.查阅各种相关文献,对各文献进行归纳总结,提取各文献中关于定积分的相关内容,系统的进行总结.其中的难点在于如何利用分块矩阵解决相关问题.相信我经过跟多的研究分块矩阵会有更多的应用.四、参考文献(根据文中参阅和引用的先后次序按序编排)[1]张政修,曹承宾,王尚文.经济数学基础—线性代数[M].北京:高等教育出版社,2003.[2]王秀芳.分块矩阵的应用讨论[J].连云港师范高等专科学校学报,2008,9:97-99.[3]张敏.分块矩阵的应用[J].吉林师范大学学报,2003,2:118-120.[4]严坤妹.分块矩阵的应用[J].福建广播电视大学学报,2006:71-73.[5]王莲花,李念伟,梁志新.分块矩阵在行列式计算中的应用[J].河南教育学院学报,2005,3:12-15.[6]刘红旭.利用分块矩阵求解非齐次线性方程组[J].辽宁师专学报,2003,6:21-22.[7]周兴建.分块矩阵及其应用[J].科技资讯,2007:126-127.[8]孔庆兰.分块矩阵的应用[J].枣庄学院学报,2006,10:24 -26.[9]同济大学数学系.线性代数[M].北京:高等教育出版社,2007.[10]孙要伟,郑远平[J].牡丹江大学学报.2008,8:104 -107.[11]陈志杰.高等代数与解析几何[M].北京:高等教育出版社,2000.[12]王萼芳.高等代数教程[M].北京:北京大学出版社,2001.[13]丘维声.高等代数[M] .北京:高等教育出版社,2000.[14]David C.Lay.Linear Algebra and Its Applications Third Edition [M].BEIJING :Publishing House ofElectronics Industry ,2004.[15]彭国华,李德琅.Linear Algebra [M].北京:高等教育出版社,2006,5.。