一、二次函数真题与模拟题分类汇编(难题易错题)1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)如图2,∵PH ⊥OB 于H ,∴∠DHB=∠AOB=90°,∴DH ∥AO ,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE ∥x 轴、PD ⊥x 轴,∴∠DPE=90°,若△PDE 为等腰直角三角形,则∠EDP=45°,∴∠EDP 与∠BDH 互为对顶角,即点E 与点A 重合,则当y=6时,﹣12x 2+2x+6=6, 解得:x=0(舍)或x=4,即点P (4,6). 【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.2.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 30),抛物线的对称轴为x 32)点P 的坐标为3034);(33 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的坐标为(3,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可; (3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:22390ax ax a --=,∵a ≠0,∴22390x x --=,解得:x =﹣3或x =33,∴点A 的坐标为(﹣3,0),B (33,0),∴抛物线的对称轴为x =3.(2)∵OA =3,OC =3,∴tan ∠CAO =3,∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =3AO =1,∴点D 的坐标为(0,1). 设点P 的坐标为(3,a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2.当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 的坐标为(3,0). 当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P 的坐标为(3,﹣4). 综上所述,点P 的坐标为(3,0)或(3,﹣4).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:330m -+=,解得:m =3,∴直线AC 的解析式为33y x =+.设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k -,0),∴AN =13k-+=31k -. 将33y x =+与y =kx +1联立解得:x =3k -,∴点M 的横坐标为3k -.过点M 作MG ⊥x 轴,垂足为G .则AG =33k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG =233k +-=2323k k --,∴11AM AN +=323231k k k -+-- =33232k k --=3(31)2(31)k k -- =3. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.3.如图1,已知抛物线y=﹣x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)设抛物线的对称轴为l ,l 与x 轴的交点为D .在直线l 上是否存在点M ,使得四边形CDPM 是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.(3)如图2,连接BC ,PB ,PC ,设△PBC 的面积为S .①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.【答案】(1)y=﹣x 2+2x+3.(2)当t=2时,点M 的坐标为(1,6);当t≠2时,不存在,理由见解析;(3)y=﹣x+3;P 点到直线BC 的距离的最大值为28,此时点P 的坐标为(32,154). 【解析】 【分析】(1)由点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC ,交抛物线对称轴l 于点E ,由点A 、B 的坐标可得出对称轴l 为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M ,使得四边形CDPM 是平行四边形,再根据点C 的坐标利用平行四边形的性质可求出点P 、M 的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE 可得出此时不存在符合题意的点M ;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【详解】(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,得10930b cb c-++=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的表达式为y=﹣x2+2x+3;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+3,∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC=2232 OB OC+=,∴P点到直线BC的距离的最大值为272928832⨯=,此时点P的坐标为(32,154).【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=16-x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x2+2x+4,拱顶D到地面OA的距离为10 m;(2)两排灯的水平距离最小是3.【解析】【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫ ⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62b x a =-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得1266x x =+=-12x x -=答:两排灯的水平距离最小是考点:二次函数的实际应用.5.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.6.如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P 从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<5.(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD (或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.【答案】(1) S=﹣231003t+0<t<5); (2)307;(3)见解析.【解析】【分析】(1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;(2)设PM=x,则AM=2x,可得3,计算x的值,根据直角三角形30度角的性质可得3AM=AO+OM,列方程可得t的值;(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.【详解】解:(1)如图1,∵四边形ABCD 是菱形,∴∠ABD=∠DBC=12∠ABC=60°,AC ⊥BD , ∴∠OAB=30°, ∵AB=20, ∴OB=10,AO=103,由题意得:AP=4t ,∴PQ=2t ,AQ=23t ,∴S=S △ABC ﹣S △APQ ,=11··22AC OB PQ AQ -, =111020322322t t ⨯⨯-⨯⨯ , =﹣23t 2+1003(0<t <5);(2)如图2,在Rt △APM 中,AP=4t ,∵点Q 关于O 的对称点为M ,∴OM=OQ ,设PM=x ,则AM=2x ,∴AP=3x=4t ,∴x=3, ∴AM=2PM=3, ∵AM=AO+OM ,∴3=103+103﹣23t , t=307; 答:当t 为307秒时,点P 、M 、N 在一直线上; (3)存在,如图3,∵直线PN 平分四边形APMN 的面积,∴S △APN =S △PMN ,过M 作MG ⊥PN 于G , ∴11··22PN AP PN MG = , ∴MG=AP ,易得△APH ≌△MGH ,∴AH=HM=3t , ∵AM=AO+OM , 同理可知:OM=OQ=103﹣23t ,3t=103=103﹣23t , t=3011. 答:当t 为3011秒时,使得直线PN 平分四边形APMN 的面积.【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.7.如图1,二次函数234y ax ax a =--的图像与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点()0,3C -.(1)求二次函数的表达式及点A 、点B 的坐标;(2)若点D 在二次函数图像上,且45DBC ABC S S =△△,求点D 的横坐标; (3)将直线BC 向下平移,与二次函数图像交于,M N 两点(M 在N 左侧),如图2,过M 作ME y ∥轴,与直线BC 交于点E ,过N 作NF y ∥轴,与直线BC 交于点F ,当MN ME +的值最大时,求点M 的坐标.【答案】(1)y =239344x x --,A (﹣1,0),B (4,0);(2)D 点的横坐标为2﹣,2;(3)M (13,﹣113) 【解析】【分析】(1)求出a ,即可求解; (2)求出直线BC 的解析式,过点D 作DH ∥y 轴,与直线BC 交于点H ,根据三角形面积的关系求解;(3)过点M 作MG ∥x 轴,交FN 的延长线于点G ,设M (m ,34m 2﹣94m ﹣3),N (n ,34n 2﹣94n ﹣3),判断四边形MNFE 是平行四边形,根据ME =NF ,求出m +n =4,再确定ME +MN =﹣34m 2+3m +5﹣52m =﹣34(m ﹣13)2+6112,即可求M ; 【详解】(1)y =ax 2﹣3ax ﹣4a 与y 轴交于点C (0,﹣3),∴a =34, ∴y =34x 2﹣94x ﹣3, 与x 轴交点A (﹣1,0),B (4,0);(2)设直线BC 的解析式为y =kx +b ,∴403k b b +=⎧⎨=-⎩, ∴343k b ⎧=-⎪⎨⎪=-⎩,∴y =34x ﹣3; 过点D 作DH ∥y 轴,与直线BC 交于点H ,设H (x ,34x ﹣3),D (x ,34x 2﹣94x ﹣3), ∴DH =|34x 2﹣3x |, ∵S △ABC =1155323⨯⨯=, ∴S △DBC =41552⨯=6,∴S△DBC=2×|34x2﹣3x|=6,∴x=2+22,x=2﹣22,x=2;∴D点的横坐标为2+22,2﹣22,2;(3)过点M作MG∥x轴,交FN的延长线于点G,设M(m,34m2﹣94m﹣3),N(n,34n2﹣94n﹣3),则E(m,34m﹣3),F(n,34n﹣3),∴ME=﹣34m2+3m,NF=﹣34n2+3n,∵EF∥MN,ME∥NF,∴四边形MNFE是平行四边形,∴ME=NF,∴﹣34m2+3m=﹣34n2+3n,∴m+n=4,∴MG=n﹣m=4﹣2m,∴∠NMG=∠OBC,∴cos∠NMG=cos∠OBC=MG OBMN BC,∵B(4,0),C(0,﹣3),∴OB=4,OC=3,在Rt△BOC中,BC=5,∴MN=54(n﹣m)=54(4﹣2m)=5﹣52m,∴ME+MN=﹣34m2+3m+5﹣52m=﹣34(m﹣13)2+6112,∵﹣34<0,∴当m=13时,ME+MN有最大值,∴M(13,﹣113)【点睛】本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握待定系数法求函数解析式的方法,结合三角形的性质解题.8.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)在(1)中抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【答案】(1)y=﹣x2﹣2x+3;(2)存在符合条件的点P,其坐标为P(﹣110)或P(﹣110P(﹣1,6)或P(﹣1,53);(3)存在,Q(﹣1,2);(4)63 8,315,24E⎛⎫-⎪⎝⎭.【解析】【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M 的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.②当CM =MP 时,根据CM 的长即可求出P 的纵坐标,也就得出了P 的坐标(要注意分上下两点).③当CM =C P 时,因为C 的坐标为(0,3),那么直线y =3必垂直平分PM ,因此P 的纵坐标是6,由此可得出P 的坐标;(3)根据轴对称﹣最短路径问题解答;(4)由于四边形BOCE 不是规则的四边形,因此可将四边形BOCE 分割成规则的图形进行计算,过E 作EF ⊥x 轴于F ,S 四边形BOCE =S △BFE +S 梯形FOCE .直角梯形FOCE 中,FO 为E 的横坐标的绝对值,EF 为E 的纵坐标,已知C 的纵坐标,就知道了OC 的长.在△BFE 中,BF =BO ﹣OF ,因此可用E 的横坐标表示出BF 的长.如果根据抛物线设出E 的坐标,然后代入上面的线段中,即可得出关于四边形BOCE 的面积与E 的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE 的最大值及对应的E 的横坐标的值.即可求出此时E 的坐标.【详解】(1)∵抛物线y =ax 2+bx+3(a≠0)与x 轴交于点A (1,0)和点B (﹣3,0), ∴309330a b a b ++=⎧⎨-+=⎩, 解得:12a b =-⎧⎨=-⎩. ∴所求抛物线解析式为:y =﹣x 2﹣2x+3;(2)如答图1,∵抛物线解析式为:y =﹣x 2﹣2x+3,∴其对称轴为x =22-=﹣1, ∴设P 点坐标为(﹣1,a ),当x =0时,y =3,∴C (0,3),M (﹣1,0) ∴当CP =PM 时,(﹣1)2+(3﹣a )2=a 2,解得a =53, ∴P 点坐标为:P 1(﹣1,53); ∴当CM =PM 时,(﹣1)2+32=a 2,解得a =±10,∴P 点坐标为:P 2(﹣110)或P 3(﹣110);∴当CM =CP 时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a )2,解得a =6, ∴P 点坐标为:P 4(﹣1,6).综上所述存在符合条件的点P,其坐标为P(﹣1,10)或P(﹣1,﹣10)或P(﹣1,6)或P(﹣1,53);(3)存在,Q(﹣1,2),理由如下:如答图2,点C(0,3)关于对称轴x=﹣1的对称点C′的坐标是(﹣2,3),连接AC′,直线AC′与对称轴的交点即为点Q.设直线AC′函数关系式为:y=kx+t(k≠0).将点A(1,0),C′(﹣2,3)代入,得23 k tk t+=⎧⎨-+=⎩,解得11kt=-⎧⎨=⎩,所以,直线AC′函数关系式为:y=﹣x+1.将x=﹣1代入,得y=2,即:Q(﹣1,2);(4)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四边形BOCE=12BF•EF+12(OC+EF)•OF=12(a+3)•(﹣a2﹣2a+3)+12(﹣a2﹣2a+6)•(﹣a)=﹣32a2﹣92a+92=﹣32(a+32)2+638,∴当a=﹣32时,S四边形BOCE最大,且最大值为638.此时,点E坐标为(﹣32,154).【点睛】本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.9.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”。