数列与不等式的综合问题突破策略类型1:求有数列参与的不等式恒成立条件下参数问题求数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数f (x )在定义域为D ,则当x ∈D 时,有f (x )≥M 恒成立⇔f (x )min ≥M ;f (x )≤M 恒成立⇔f (x )max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.【题1】 等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >1231111na a a a ++++……恒成立的正整数n 的范围. 【题1】 利用条件中两项间的关系,寻求数列首项a 1与公比q 之间的关系,再利用等比数列前n 项公式和及所得的关系化简不等式,进而通过估算求得正整数n 的取值范围. 【解】 由题意得:(a 1q 16)2=a 1q 23,∴a 1q 9=1. 由等比数列的性质知数列{1n a }是以11a 为首项,以1q 为公比的等比数列,要使不等式成立, 则须1(1)1n a q q -->111(1)11n a q q--,把a 21=q -18代入上式并整理,得q -18(q n -1)>q (1-1n q ),q n >q 19,∵q >1,∴n >19,故所求正整数n 的取值范围是n ≥20.【点评】 本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果.本题解答体现了转化思想、方程思想及估算思想的应用. 【题2】设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【题2】 第(1)小题利用S n 与a n 的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n +1≥a n 转化为关于n 与a 的关系,再利用a ≤f (n )恒成立等价于a ≤f (n )min 求解. 【解】 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3 n +1=2(S n -3n ).因此,所求通项公式为b n =S n -3n =(a -3)2 n -1,n ∈N *, ① (2)由①知S n =3n +(a -3)2 n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2 n -1-3n -1-(a -3)2 n -2=2×3n -1+(a -3)2 n -2,a n +1-a n =4×3 n -1+(a -3)2 n -2=2 n -2·[12·(32)n -2+a -3],当n ≥2时,a n +1≥a n ,即2 n -2·[12·(32)n -2+a -3]≥0,12·(32)n -2+a -3≥0,∴a ≥-9,综上,所求的a 的取值范围是[-9,+∞)【点评】 一般地,如果求条件与前n 项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解.本题求参数取值范围的方法也一种常用的方法,应当引起重视.类型2:数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【题3】 数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.(1)求数列{a n }的通项公式; (2)设p 、q 都是正整数,且p ≠q ,证明:S p +q <12(S 2p +S 2q ).【题3】 根据条件首先利用等差数列的通项公式及前n 项公式和建立方程组即可解决第(1)小题;第(2)小题利用差值比较法就可顺利解决.【解】 (1)设等差数列{a n }的公差是d ,依题意得,⎩⎨⎧ a 1+2d =74a 1+6d =24,解得⎩⎨⎧ a 1=3d =2,∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. (2)证明:∵a n =2n +1,∴S n =1()2n n a a +=n 2+2n . 2S p +q -(S 2p +S 2q )=2[(p +q )2+2(p +q )]-(4p 2+4p )-(4q 2+4q )=-2(p -q )2,∵p ≠q ,∴2S p +q -(S 2p +S 2q )<0,∴S p +q <12(S 2p +S 2q ).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【题4】已知数列{}n a 中,113,21(1)n n a a a n +==-≥ (1)设1(1,2,3)n n b a n =-=,求证:数列{}n b 是等比数列;(2)求数列{}n a 的通项公式(3)设12nn n n c a a +=⋅,求证:数列{}n c 的前n 项和13n S <.【题4】(1)由121n n a a +=-得到112(1)n n a a +-=-,即1121n n a a +-=-……2分【点评】关于数列求和与不等式相结合的问题,常结合裂项相消或错位相减法放缩求和.【题5】已知数列{}n a 满足11111,,224nn n a a a n N ++⎛⎫==∈ ⎪⎝⎭.(1)求数列{}n a 的通项公式;(2)若数列{}n b 的前n 项和2n s n =,112233n n n T a b a b a b a b =++++,求证:3n T <.【题5】(1)1122111124,41124n n n n nn n na a a a a a +++++⎛⎫⎪⎝⎭=∴=⎛⎫ ⎪⎝⎭, 又11221111,,2244a a a a ==⋅∴=,{}n a ∴是公比为12的等比数列,12nn a ⎛⎫∴= ⎪⎝⎭(2)21n b n =-,231135232122222n n n n n T ---=++++……①, 234111352321222222n n n n n T +--=+++++②, ①-②得: 2311112222132322222222n n n n n n T ++-+=++++-=-, 2332n n n T +∴=- 3n T ∴<【题6】已知α为锐角,且12tan -=α,函数)42sin(2tan )(2παα+⋅+=x x x f ,数列{a n }的首项)(,2111n n a f a a ==+. ⑴ 求函数)(x f 的表达式; ⑵ 求证:n n a a >+1;⑶ 求证:),2(21111111*21N n n a a a n ∈≥<++++++<【题6】⑴1)12(1)12(2tan 1tan 22tan 22=---=-=ααα 又∵α为锐角 ∴42πα= ∴1)42sin(=+πα x x x f +=2)(⑵ n n n a a a +=+21 ∵211=a ∴n a a a ,,32都大于0∴02>n a ∴n n a a >+1⑶ nn n n n n n a a a a a a a +-=+=+=+111)1(11121 ∴11111+-=+n n n a a a∴1322121111111111111+-++-+-=++++++n n n a a a a a a a a a 1111211++-=-=n n a a a ∵4321)21(22=+=a , 143)43(23>+=a , 又∵n n a a n >≥+12∴131>≥+a a n ∴21211<-<+n a ∴2111111121<++++++<na a a 【题7】已知数列{}n a 满足()111,21n n a a a n N *+==+∈(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足n n b n b b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列;(3)证明:()23111123n n N a a a *++++<∈ 【题7】(1)121+=+n n a a ,)1(211+=+∴+n n a a ……………………2分故数列}1{+n a 是首项为2,公比为2的等比数列。
……………………3分n n a 21=+∴,12-=n n a …………………………………………4分(2)n n b n b b b b a )1(44441111321+=---- ,n n nb n b b b 24)(21=∴-+++ ……………5分n n nb n b b b =-+++2)(221 ①1121)1()1(2)(2+++=+-++++n n n b n n b b b b ②②—①得n n n nb b n b -+=-++11)1(22,即1)1(2+-=-n n b n nb ③……………………8分212)1(++=-+∴n n nb b n ④④—③得112-++=n n n nb nb nb ,即112-++=n n n b b b ……………………9分 所以数列}{n b 是等差数列(3)1111212211211-++=-<-=n n n n a a ………………………………11分 设132111++++=n a a a S ,则)111(211322n a a a a S ++++< )1(21112+-+=n a S a …………13分3213212112<-=-<++n n a a a S ………………………………14分 【题8】数列{}n a 满足411=a ,()),2(2111N n n a a a n nn n ∈≥--=--. (1)求数列{}n a 的通项公式n a ;(2)设21nn a b =,求数列{}n b 的前n 项和n S ; (3)设2)12(sin π-=n a c n n ,数列{}n c 的前n 项和为n T .求证:对任意的*∈N n ,74<n T .【题8】(1)12)1(1---=n n n a a ,])1(1)[2()1(111---+-=-+∴n n n n a a ,………3分 又3)1(11=-+a,∴数列()⎭⎬⎫⎩⎨⎧-+n n a 11是首项为3,公比为2-的等比数列.……5分 1)2(3)1(1--=-+n n n a , 即123)1(11+⋅-=--n n n a . ………………6分 (2)12649)123(1121+⋅+⋅=+⋅=---n n n n b .9264321)21(1641)41(19-+⋅+⋅=+--⋅⋅+--⋅⋅=n n S n n n n n . ………………9分(3)1)1(2)12(sin--=-n n π,1231)1()2(3)1(111+⋅=----=∴---n n n n n c . ……………………10分 当3≥n 时,则12311231123113112+⋅+++⋅++⋅++=-n n T <212211211321])(1[28112312312317141--+=⋅+⋅+⋅++--n n 7484488447612811])21(1[6128112=<=+<-+=-n . 321T T T << , ∴对任意的*∈N n ,74<n T . ………………………14分【题9】已知数列{}n a 的前n 项和为n S ,且对于任意的*n N ∈,恒有2n n S a n =-,设2log (1)n n b a =+.(1)求证:数列{1}n a +是等比数列;(2)求数列{}{},n n a b 的通项公式n a 和n b ;(3)若12nb n n nc a a +=⋅,证明:1243n c c c +++<. 【题9】(1)当1=n 时,1211-=a S ,得11=a .∵n a S n n -=2,∴当2≥n 时,)1(211--=--n a S n n , 两式相减得:1221--=-n n n a a a ,∴121+=-n n a a . ∴)1(222111+=+=+--n n n a a a ,∴}1{+n a 是以211=+a 为首项,2为公比的等比数列. (2)由(1)得n n n a 22211=⋅=+-,∴*,12N n a n n ∈-=.∴*22,2log )1(log N n n a b n n n ∈==+=. (3)12+=n n n n a a c ,21112++++=n n n n a a c ,由}{n a 为正项数列,所以}{n c 也为正项数列,从而2142)12(212)12(222221=--<--==++++n n n n n n n n a a c c ,所以数列}{n c 递减. 所以11121121)21()21(21c c c c c c c n n -++++<+++ 34211)21(11<⋅--=c n. 另证:由121121)12)(12(211---=--=++n n n n n n c ,所以 +---+---=+++)121121()121121(322121n c c c341121112112111<<--=---++n n n .类型3:求数列中的最大值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【题10】 等比数列{a n }的首项为a 1=2002,公比q =-12.(1)设f (n )表示该数列的前n 项的积,求f (n )的表达式; (2)当n 取何值时,f (n )有最大值.【题10】 第(1)小题首先利用等比数列的通项公式求数列{a n }的通项,再求得f (n )的表达式;第(2)小题通过商值比较法确定数列的单调性,再通过比较求得最值.【解】 (1)a n =2002·(-12)n -1,f (n )=2002n·(-12)n(n -1)2(2)由(1),得|f(n +1)||f(n)|=20022n ,则当n ≤10时,|f(n +1)||f(n)|=20022n >1,∴|f (11)|>|f (10)|>…>|f (1)|,当n ≥11时,|f(n +1)||f(n)|=20022n <1,∴|f (11)|>|f (12)|>|f (13)|>…,∵f (11)<0,f (10)<0,f (9)>0,f (12)>0, ∴f (n )的最大值为f (9)或f (12)中的最大者.∵f(12)f(9)=200212·(12)6620029·(12)36=20023·(12)30=(2002210)3>1, ∴当n =12时,f (n )有最大值为f (12)=200212·(12)66.【点评】 本题解答有两个关键:(1)利用商值比较法确定数列的单调性;(2)注意比较f (12)与f (9)的大小.整个解答过程还须注意f (n )中各项的符号变化情况.类型4:求解探索性问题数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【题11】 已知{a n }的前n 项和为S n ,且a n +S n =4. (1)求证:数列{a n }是等比数列;(2)是否存在正整数k ,使S k+1-2S k -2>2成立.【题11】 第(1)小题通过代数变换确定数列a n +1与a n 的关系,结合定义判断数列{a n }为等比数列;而第(2)小题先假设条件中的不等式成立,再由此进行推理,确定此不等式成立的合理性.【解】 (Ⅰ)由题意,S n +a n =4,S n +1+a n +1=4,由两式相减,得(S n +1+a n +1)-(S n +a n )=0,即2a n +1-a n =0,a n +1=12a n ,又2a 1=S 1+a 1=4,∴a 1=2,∴数列{a n }是以首项a 1=2,公比为q =12的等比数列.(Ⅱ)由(Ⅰ),得S n =2[1―(12)n ]1―12=4-22-n .又由S k+1-2S k -2>2,得4-21-k-24-22-k -2>2,整理,得23<21-k <1,即1<2 k -1<32,∵k ∈N *,∴2k -1∈N *,这与2k -1∈(1,32)相矛盾,故不存在这样的k ,使不等式成立.【点评】 本题解答的整个过程属于常规解法,但在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.【题12】已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明数列{a n }不是等比数列;(2)试判断数列{b n }是否为等比数列,并证明你的结论;(3)设0<a <b ,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b ?若存在,求λ的取值范围;若不存在,说明理由.【题12】第(1)小题利用反证法证明;第(2)小题利用等比数列的定义证明;第(3)小题属于存在型问题,解答时就假设a <S n <b 成立,由此看是否能推导出存在存在实数λ. 【解】 (1)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即(23λ-3)2=λ(49λ-4)⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾,所以{a n }不是等比数列. (2)解:因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1(23a n -2n +14)=-23(a n -3n -21)=-23b n ,又b 1=-(λ+18),所以当λ=-18时,b n =0(n ∈N *),此时{b n }不是等比数列;当λ≠-18时,b 1=-(λ+18)≠0,由上可知b n ≠0,∴b n+1b n =-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.(3)由(2)知,当λ=-18,b n =0(n ∈N *),S n =0,不满足题目要求;.∴λ≠-18,故知b n =-(λ+18)×(-23)n -1,于是S n =-35(λ+18)·[1-(-23)n ]要使a <S n <b 对任意正整数n 成立,即a <--35(λ+18)·[1-(-23)n ]<b ,(n ∈N *).得a 1-(-23)n <-35(λ+18)<b 1-(-23)n,(n ∈N *) ①令f (n )=1-(-23)n ,则当n 为正奇数时,1<f (n )≤53,当n 为正偶数时59≤f (n )<1;∴f (n )的最大值为f (1)=53,f (n )的最小值为f (2)=59,于是,由①式得59a <-35(λ+18)<35b ,∴-b -18<λ<-3a -18,(必须-b <-3a ,即b >3a ).当a <b <3a 时,由-b -18≥-3a -18,不存在实数满足题目要求; 当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b ,且λ的取值范围是(-b -18,-3a -18). 【点评】 存在性问题指的是命题的结论不确定的一类探索性问题,解答此类题型一般是从存在的方面入手,寻求结论成立的条件,若能找到这个条件,则问题的回答是肯定的;若找不到这个条件或找到的条件与题设矛盾,则问题的回答是否定的.其过程可以概括为假设——推证——定论.本题解答注意对参数λ及项数n 的双重讨论.【题13】设数列{}{}n n b a ,满足3,4,6332211======b a b a b a ,且数列{}()++∈-N n a a n n 1是等差数列,数列{}()+∈-N n b n 2是等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在+∈N k ,使⎪⎭⎫ ⎝⎛∈-21,0k k b a ,若存在,求出k ,若不存在,说明理由.【题13】(1)由已知212-=-a a ,123-=-a a∴公差()121=---=d ………1分31)1()(121-=⨯-+-=-∴+n n a a a a n n ………2分 )()()(113121--++-+-+=∴n n n a a a a a a a a )4(0)1()2(6-+++-+-+=n[]2)1()4()2(6--+-+=n n =21872+-n n ………4分由已知22,4221=-=-b b ………5分所以公比21=q()1112142122--⎪⎭⎫⎝⎛⨯=⎪⎭⎫ ⎝⎛-=-∴n n n b b ………6分 nn b ⎪⎭⎫⎝⎛⨯+=∴2182………7分(2)设k k b a k f -=)(k2171928222k k ⎡⎤⎛⎫⎛⎫=-+-+⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2k17491872242k ⎡⎤⎛⎫⎛⎫=---⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦………8分所以当4≥k 时,)(k f 是增函数.………10分又21)4(=f ,所以当2≥k 时21)(≥k f ,………12分又0)3()2()1(===f f f ,………13分所以不存在k ,使⎪⎭⎫⎝⎛∈21,0)(k f ………14分。