当前位置:文档之家› 指数运算和指数函数

指数运算和指数函数

指数运算和指数函数一、知识点1.根式的性质(1)当n 为奇数时,有a a n n = (2)当n 为偶数时,有⎩⎨⎧<-≥==)0(,)0(,a a a a a a n n(3)负数没有偶次方根 (4)零的任何正次方根都是零 2.幂的有关概念(1)正整数指数幂:)(.............*∈⋅⋅=N n a a a a a nn(2)零指数幂)0(10≠=a a (3)负整数指数幂 ).0(1*∈≠=-N p a a a pp (4)正分数指数幂 )1,,,0(>*∈>=n N n m a a an m nm 且(5)负分数指数幂 nm nm aa1=-)1,,,0(>*∈>n N n m a 且(6)0的正分数指数幂等于0,0的负分数指数幂无意义 3.有理指数幂的运算性质 (1)),,0(,Q s r a aa a sr sr∈>=⋅+ (2)),,0(,)(Q s r a a a rs s r ∈>=(3)),0,0(,)(Q r b a a a ab srr ∈>>⋅=4.指数函数定义:函数)10(≠>=a a a y x且叫做指数函数。

5. 指数函数的图象和性质x a y =0 < a < 1 a > 1图 象性 质定义域 R值域(0 , +∞)定点 过定点(0,1),即x = 0时,y = 1(1)a > 1,当x > 0时,y > 1;当x < 0时,0 < y < 1。

(2)0 < a < 1,当x > 0时,0 < y < 1;当x < 0时,y > 1。

单调性 在R 上是减函数在R 上是增函数对称性x y a =和x y a -=关于y 轴对称二、指数函数底数变化与图像分布规律(1)①xy a=②xy b=③xy c=④xy d=则:0<b<a<1<d<c又即:x∈(0,+∞)时,x x x xb a d c<<<(底大幂大)x∈(-∞,0)时,x x x xb a d c>>>(2)特殊函数112,3,(),()23x x x xy y y y====的图像:三、指数式大小比较方法(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较.(2)中间量法(3)分类讨论法(4)比较法比较法有作差比较与作商比较两种,其原理分别为:①若0A B A B->⇔>;0A B A B-<⇔<;0A B A B-=⇔=;②当两个式子均为正值的情况下,可用作商法,判断1AB>,或1AB<即可.四、典型例题类型一、指数函数的概念例1.函数2(33)xy a a a=-+是指数函数,求a的值.【答案】2【解析】由2(33)xy a a a=-+是指数函数,可得2331,0,1,a aa a⎧-+=⎨>≠⎩且解得12,01,a aa a==⎧⎨>≠⎩或且,所以2a=.举一反三:【变式1】指出下列函数哪些是指数函数?(1)4xy=;(2)4y x=;(3)4xy=-;(4)(4)xy=-;(5)1(21)(1)2xy a a a=->≠且;(6)4xy-=.【答案】(1)(5)(6)【解析】(1)(5)(6)为指数函数.其中(6)4xy -==14x⎛⎫⎪⎝⎭,符合指数函数的定义,而(2)中底数x 不是常数,而4不是变数;(3)是-1与指数函数4x 的乘积;(4)中底数40-<,所以不是指数函数.类型二、函数的定义域、值域例2.求下列函数的定义域、值域.(1)313x xy =+;(2)y=4x -2x+1;(4)y =为大于1的常数)【答案】(1)R ,(0,1);(2)R [+∞,43); (3)1,2⎡⎫-+∞⎪⎢⎣⎭[)0,+∞;(4)[1,a)∪(a ,+∞) 【解析】(1)函数的定义域为R (∵对一切x ∈R ,3x ≠-1).∵ (13)1111313x x xy +-==-++,又∵ 3x >0, 1+3x >1, ∴ 10113x <<+, ∴ 11013x-<-<+,∴ 101113x<-<+, ∴值域为(0,1). (2)定义域为R ,43)212(12)2(22+-=+-=xx x y ,∵ 2x >0, ∴ 212=x 即 x=-1时,y 取最小值43,同时y 可以取一切大于43的实数,∴ 值域为[+∞,43).(3)要使函数有意义可得到不等式211309x --≥,即21233x --≥,又函数3x y =是增函数,所以212x -≥-,即12x ≥-,即1,2⎡⎫-+∞⎪⎢⎣⎭,值域是[)0,+∞. (4)∵011112≥+-=-+x x x x ∴ 定义域为(-∞,-1)∪[1,+∞), 又∵111011≠+-≥+-x x x x 且,∴ a ay a y x x x x≠=≥=-+-+1121121且, ∴值域为[1,a)∪(a ,+∞).【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0的条件,第(4)小题中112111≠+-=+-x x x 不能遗漏.举一反三:【变式1】求下列函数的定义域: (1)2-12x y =(2)y =(3)y =(4)0,1)y a a =>≠【答案】(1)R ;(2)(]-3∞,;(3)[)0,+∞;(4)a>1时,(]-0∞,;0<a<1时,[)0+∞,【解析】(1)R(2)要使原式有意义,需满足3-x ≥0,即3x ≤,即(]-3∞,.(3) 为使得原函数有意义,需满足2x -1≥0,即2x ≥1,故x ≥0,即[)0,+∞(4) 为使得原函数有意义,需满足10xa -≥,即1xa ≤,所以a>1时,(]-0∞,;0<a<1时,[)0+∞,.【总结升华】本题中解不等式的依据主要是指数函数的单调性,根据所给的同底指数幂的大小关系,结合单调性来判断指数的大小关系.类型三、指数函数的单调性及其应用例3.讨论函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调性,并求其值域.【思路点拨】对于x ∈R ,22103x x-⎛⎫> ⎪⎝⎭恒成立,因此可以通过作商讨论函数()f x 的单调区间.此函数是由指数函数及二次函数复合而成的函数,因此可以逐层讨论它的单调性,综合得到结果.【答案】函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数 (0,3]【解析】解法一:∵函数()f x 的定义域为(-∞,+∞),设x 1、x 2∈(-∞,+∞)且有x 1<x 2,∴222221()3x x f x -⎛⎫= ⎪⎝⎭,211211()3x x f x -⎛⎫= ⎪⎝⎭,222222121212121122()()(2)2211()113()3313x x x x x x x x x x x x f x f x -----+--⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭. (1)当x 1<x 2<1时,x 1+x 2<2,即有x 1+x 2-2<0.又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)<0,则知2121()(2)113x x x x -+-⎛⎫> ⎪⎝⎭.又对于x ∈R ,()0f x >恒成立,∴21()()f x f x >. ∴函数()f x 在(-∞,1)上单调递增.(2)当1≤x 1<x 2时,x 1+x 2>2,即有x 1+x 2-2>0. 又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)>0,则知2121()(2)1013x x x x -+-⎛⎫<< ⎪⎝⎭.∴21()()f x f x <.∴函数()f x 在[1,+∞)上单调递减.综上,函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数.∵x 2―2x=(x ―1)2―1≥-1,1013<<,221110333x x--⎛⎫⎛⎫<≤= ⎪⎪⎝⎭⎝⎭. ∴函数()f x 的值域为(0,3].解法二:∵函数()f x 的下义域为R ,令u=x 2-2x ,则1()3uf u ⎛⎫= ⎪⎝⎭.∵u=x 2―2x=(x ―1)2―1,在(―∞,1]上是减函数,1()3uf u ⎛⎫= ⎪⎝⎭在其定义域是减函数,∴函数()f x 在(-∞,1]为增函数.又1()3uf u ⎛⎫= ⎪⎝⎭在其定义域为减函数,而u=x 2―2x=(x ―1)2―1在[1,+∞)上是增函数,∴函数()f x 在[1,+∞)上是减函数.值域的求法同解法一.【总结升华】由本例可知,研究()f x y a=型的复合函数的单调性用复合法,比用定义法要简便些,一般地有:即当a >1时,()f x y a =的单调性与()y f x =的单调性相同;当0<a <1时,()f x y a=的单调与()y f x =的单调性相反.举一反三:【变式1】求函数2323xx y -+-=的单调区间及值域.【答案】3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减. 14(0,3]【解析】[1]复合函数——分解为:u=-x 2+3x-2, y=3u ;[2]利用复合函数单调性判断方法求单调区间; [3]求值域. 设u=-x 2+3x-2, y=3u ,其中y=3u 为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增,u=-x 2+3x-2在3[,)2x ∈+∞上单减, 则2323xx y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.又u=-x 2+3x-22311()244x =--+≤, 2323x x y -+-=的值域为14(0,3].【变式2】求函数2-2()(01)x x f x a a a =>≠其中,且的单调区间.【解析】当a>1时,外层函数y=a u 在()-∞+∞,上为增函数,函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()(-1)x x f x a =∞在区间,上为减函数,在区间[)1+∞,上为增函数;当0<a<1时,外层函数y=a u 在()-∞+∞,上为减函数,函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()x xf x a =在区间(1)-∞,上为增函数,在区间[)1,+∞上为减函数.例4.证明函数1()(1)1x xa f x a a -=>+在定义域上为增函数. 【思路点拨】利用函数的单调性定义去证明。

相关主题