当前位置:文档之家› 第二章 焊接热过程

第二章 焊接热过程

焊接结构
(2)产热机构
• 电弧热:焊接过程中热量的最主要的来源,利用气体介质中的放电 过程来产生热量,来熔化焊丝和加热工件;
• 电阻热:焊接电流过焊丝和工件时,将产生热量; • 相变潜热:母材和焊丝发生熔化时将产生相变潜热; • 变形热:构件变形时将产生变形热
焊接结构
(3)散热机构 环境散热:处于高温的工件和焊丝向周围介质散失热量; 飞溅散热:飞溅除发生质量损失之外,同时也伴有热量损 失。
1)Gauss模型 • Gauss热源模型是最早的分布热源模型,该模型用高斯函数描
述电弧覆盖区域内的热流密度,即
q(r) qm exp Kr 2
dn
2
3 k
K 为能量集中系数,主要取决于焊接速度、焊接规范等。
焊接结构
2)双椭球热源 Goldak在Gauss 的基础上改进了热源模型,他提出热流不仅作用 在表面,而是在一定深度上都有热流,即体积热源。而且热流密度 在宽度、长度、深度方向均为高斯分布。
T
Q
hc 4at
exp
r2 4at
焊接结构
(2)薄板快速移动热源相当于面热源
T
Q/ A
1
c(4at) 2
exp
x2 4at
焊接结构
2.3 焊接热循环
焊接热循环: ① 在焊接过程中热源沿焊件移动时,焊件上某点的温度随时间由 低而高,达到最大值后又由高而低的变化 ② 描述焊接热源对被焊金属的热作用过程
二维线热源温度场、一维面热源温度场。
•温度场分析假设: ① 在整个焊接过程中,热物理常数不随温度而改变; ② 焊件的初始温度分布均匀,并忽略相变潜热; ③ 焊件的几何尺寸认为是无限的; ④ 热源集中作用在焊件上是按点状,线状或面状假定的; ⑤ 点热源不考虑散热。
焊接结构
2.2.1 瞬时固定热源
(1) 瞬时固定点热源(不考虑散热)
采用与点热源的分析相同的方法,利用叠加原理可得:
T( x0 ,t)
0t
qdt'
Ac4a(t t')1
2
exp
(x t')2 4a(t t')
b1(t
t')
采用移动式坐标,经整理后可得
T( x,t )
q/ A
c 4a 1
2
exp
x 2a
0t
qdt' ' t''1 2
exp
2t' 2a
综上,可见焊接热过程是一个十分复杂的问题,涉及到多学科的知识, 因此,在求解这一问题将要对各方面的知识加以综合利用。
焊接结构
2.1.2 传热基本定律 (1) 热传导定律
焊接结构
焊接结构
焊接结构
焊接结构
焊接结构
2.1.3 焊接热源
(1)实现金属焊接所需要的能量从基本性质来看,包括有电能,机 械能、光辐射能和化学能等。 电弧焊热源、气体火焰焊接热源、电阻焊热源 、摩擦焊 (热导率,体积热容,热扩散率,比焓,表面传热系数等)
焊接结构
(4)焊件的板厚及形状
焊接结构
2.2.4 快速移动大功率热源的温度场
(1)厚板快速移动热源 相当于线热源的作用结果。在整个长度方向热源热量分布是均匀的,某 点的温度相当于若干个dx上的线热源作用的总和。
热传 导导
dQx dqx dy dz dt
致的 能量
q T
变化
n
dqx
qx x
dx
2T x 2
dQx
2T x 2
dxdydzdt
dQ
2T x 2
2T y 2
2T z 2
dxdydzdt
+
dQ cdxdydzdT
焊接结构
T t
c
2T x2
2T y 2
2T z 2
2T
Density (kg/mm3)
Value
0.05 13.94
460 7.80×10-6
焊接结构
(3)瞬时面状热源(考虑散热)
导热微分方程及特解:
T t
c
2T x 2
T
Q
1
Ac(4at) 2
exp
x2
4t
考虑散热后为:
T t
a
2T x 2
b*T
T
Q
1
Ac(4at) 2
exp
x2
4t
2 T
ch
T0 bT
其中 b 2 / ch,称为散温系数,s-1.
焊接结构
瞬时线热源为二维传热,其导热微分方程及特解为:
T t
c
2T x 2
2T y 2
T
Q
4ht
exp
r2 4at
结合表面散热方程,
dT bT
瞬时线热源导热微分方程及特解为: dt
T t
c
2T x 2
2T y 2
T
2Q
3
c(4t) 2
exp
x2
y2
4t
z2
移动热源在每一个瞬时dt’内对某点温度的贡
献为:
dT 2UIdt'
c
1 4 t t '
3
2
exp
x0
vt '
2
y02
z02
4 t t '
连续移动点热源的温度场:
T
0t
2Qdt '
c
1
4 t t'
3
2
exp
x0
T f xi yi zi (t)
焊接结构
2.3.1 焊接热循环主要参数
tH
TM
w ① 加热速度 H
T ② 加热的最高温度 M
t ③ 在相变温度以上的停留时间 H ④ 冷却速度或冷却时间
vC t8/5
焊接结构
① 加热速度 wH
– 加热速度受许多因素影响: • 不同的焊接方法 • 不同的被焊金属 • 不同厚度 • 不同焊接热输入等
bT
a
2T x 2
2T y 2
bT
T T0
Q
hc 4at
exp
r2 4at
bt
焊件上温度场的分布形态? 等温线是以r为半径的圆环
焊接结构
温度场分析中常用符号及、含义及常用值(低碳低合金钢)
Symbol r a α C
Definition an unit Distance from weld (mm) Thermal conductivity (J/(s mm˚C)) Thermal diffusivity (mm2/s) Surface heat transfer coefficient (J/(s mm2˚C)) Specific heat (J/(kg˚C))
温度 变化 导致 的能 量变 化
方程中假设初始条件为0℃,不考虑表面散热,则方程的特解

T
Q
3
c(4at) 2
exp
r2 4at
一般熔化焊热量是通过焊件表面传递的,因此焊件上的热量实际 上集中在半个椭球内,因此上式需修正为:
T
2Q
3
c(4at) 2
exp
r2 4at
焊件表面上等温线的形状?
焊接结构
T
2Q
3
c(4t) 2
exp
r2
4t
T
2Q
3
c(4t) 2
exp
r2 4t
焊接结构
Tmax
2Q
3
c (4t) 2
在固定的位置r处,T与t的关系
T
f
1
t
3
2
exp
r2 4t
当t→0时,T →∞ 当t→∞时,T → 0
在固定的时间t时,T与r的关系
T
f
exp
r2 4at
q
2r
exp
vx
2a
r
焊接结构
T
T
焊接结构
厚大焊件上点状移动热源的温度场
移动热源温度场与固定热源温度场的比较
前沿陡降
前后沿一致
移动点热源 焊接结构
固定点热源
(2)连续移动线状热源
T
Q
hc 4at
exp
r2 4at
同点热源的分析可得:
T(x, y,t)
q
4h
exp
x 2
0t
dt'' t''
vt '
2
y02
z02
4 t t'
焊接结构
由于x=x0-vt,y=y0,z=z0,令 t'' t t,' 则连续移动点热源温度场为
T
2q c
1
4 3
2
exp
vx 2a
0t
dt'' t''3 2
exp
v2t'' 4a
y02 z02 4at' '
其达到极限状态时温度场为
Tr , x
(2)焊接热源的有效热功率(热效率):<1。
热输入 瞬时热源:采用热量Q[J] 连续热源:采用热流量q[J/S]
焊接结构
(3)集中热源模型的简化 Rosenthal根据构件的几何形状及其传热的特点将焊接传热的 问题分为了三类:
焊接结构
• 三维传热的问题指的是对于非常大的厚大焊件,热源的作用体 积相对总体积非常小,因此焊接热源的热量将产生三个方向的 传导,又称为厚板点热源模型
第一章 绪 论 Introduction
相关主题