当前位置:文档之家› 概率论与数理统计(茆诗松)第二版课后第八章习题参考答案

概率论与数理统计(茆诗松)第二版课后第八章习题参考答案

第八章 方差分析与回归分析本章前三节研究方差分析,讨论多个正态总体的比较,后两节研究回归分析.讨论两个变量之间的相关关系.§8.1 方差分析8.1.1问题的提出上一章讨论了单个或两个正态总体的假设检验,这里讨论多个正态总体的均值比较问题.通常为了研究某一因素对某项指标的影响情况,将该因素在多种情形下进行抽样检验,作出比较.一般将该因素称为一个因子,所检验的每种情形称为水平.在每个水平下需要考察的指标都分别构成一个总体,比较它们的总体均值是否相等.对每一个总体都分别抽取一个样本,样本容量称为重复数.如果只对一个因子中的多个水平进行比较,称为单因子方差分析,对多个因子的水平进行比较,称为多因子方差分析.本章只进行单因子方差分析.例 在饲料养鸡增肥的研究中,现有三种饲料配方:A 1 , A 2 , A 3 ,为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量.实验结果如下表所示: 饲料鸡重/gA 1 1073 1009 1060 1001 1002 1012 1009 1028 A 2 1107 1092 990 1109 1090 1074 1122 1001 A 3 1093 1029 1080 1021 1022 1032 1029 1048 在此例中,就是要考察饲料对鸡增重的影响,需要比较三种饲料对鸡增肥的作用是否相同.这里,饲料就是一个因子,三种饲料配方就是该因子的三个水平,每种饲料喂养的雏鸡60天后的重量分别构成一个总体,这里共有3个总体,每一个总体抽取样本的重复数都是8,比较这3个总体的均值是否相等. 8.1.2单因子方差分析的统计模型设因子A 有r 个水平A 1 , A 2 , …, A r ,在每个水平下需要考察的指标都构成一个总体,即有r 个总体,分别记为Y 1 , Y 2 , …, Y r ,对每一个总体都分别抽取一个样本,首先考虑重复数相等的情形,设重复数都是m ,总体Y i 的样本Y i 1 , Y i 2 , …, Y im ,i = 1, 2, …, r .作出以下假定:(1)每一个总体都服从正态分布,即r i N Y i i i ,,2,1),,(~2L =σµ;(2)各个总体的方差都相等,即22221r σσσ===L ,都记为σ 2;(3)各个总体及抽取的样本相互独立,即Y ij 相互独立,i = 1, 2, …, r ,j = 1, 2, …, m . 需要比较它们的总体均值是否相等,即检验的原假设与备择假设为H 0:µ 1 = µ 2 = … = µ r vs H 1:µ 1 , µ 2 , …, µ r 不全相等,如果H 0成立,就可以认为这r 个水平下的总体均值相同,称为因子A 不显著;反之,如果H 0不成立,就称为因子A 显著.在水平A i 下的样品Y ij 与该水平下的总体均值µ i 之差ε ij = Y ij − µ i 为随机误差.由于Y ij ~ N (µ i , σ 2 ),因此随机误差ε ij ~ N (0 , σ 2 ).对所有r 个水平下的总体均值求平均,即∑==+++=ri i r r r 1211)(1µµµµµL称为总均值.每个水平A i 下的总体均值µ i 与总均值µ 之差a i = µ i − µ 称为该水平A i 下主效应.显然所有主效应a i 之和等于0,即01=∑=ri ia,检验所有水平下的总体均值是否相等,也就是检验所有主效应a i 是否全等于0.这样单因子方差分析在重复数相等的情形下,统计模型为⎪⎪⎩⎪⎪⎨⎧===++=∑=).,0(;0;,,2,1,,,2,1,21σεεµN a m j r i a Y ij r i i ij i ij 相互独立,且都服从L L 检验的原假设与备择假设为H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0. 8.1.3平方和分解一.试验数据对于r 个总体下的试验数据Y ij , i = 1, 2, …, r ,j = 1, 2, …, m ,记T i 表示第i 个总体下试验数据总和,⋅i Y 表示第i 个总体下样本均值,n = rm 表示总的样本容量,T 表示总的试验数据总和,Y 表示总的样本均值,即∑==mj ij i Y T 1,∑=⋅==mj ij i i Y m m T Y 11, i = 1, 2, …, r ,∑∑∑=====r i mj ij r i i Y T T 111,∑∑∑=⋅=====ri i r i m j ij Y r Y rm T n Y 111111, 用⋅i Y 作为µ i 的点估计,Y 作为µ 的点估计.又记⋅i ε表示第i 个总体下随机误差平均值,ε表示总的随机误差平均值,即∑=⋅=mj ij i m 11εε, i = 1, 2, …, r ,∑∑∑=⋅====ri i r i m j ij r n 11111εεε.显然有⋅⋅+=i i i Y εµ,εµ+=Y .在单因子方差分析中通常将试验数据及基本计算结果写成表格形式 因子水平试验数据和 和的平方平方和A 1 Y 11 Y 12 … Y 1m T 1 21T∑21jY A 2 Y 21 Y 22 … Y 2m T 2 22T∑22jY┆ ┆ ┆ ┆ ┆ ┆ ┆┆A rY r 1Y r 2…Y rmT r2r T ∑2rjYΣ T∑=ri i T 12∑∑==ri mj ijY112二.组内偏差与组间偏差数据Y ij 与样本总均值Y 之差Y Y ij −称为样本总偏差,可以分成两部分之和:)()(Y Y Y Y Y Y i i ij ij −+−=−⋅⋅,其中⋅⋅⋅−=+−+=−i ij i i ij i i ij Y Y εεεµεµ)()(是第i 个总体内数据与该总体内样本均值的偏差,称为组内偏差,反映第i 个总体内的随机误差;εεεµεµ−+=+−+=−⋅⋅⋅i i i i i a Y Y )()(是第i 个总体内样本均值与总样本均值的偏差,称为组间偏差,反映第i 个总体的主效应. 三.偏差平方和及其自由度在统计学中,对于k 个独立数据Y 1 , Y 2 , …, Y k ,平均值∑==ki i Y k Y 11,称Y i 与Y 之差为偏差,所有偏差的平方和∑=−=ki i Y Y Q 12)(称为这k 个数据的偏差平方和,反映这k 个数据的分散程度.由于所有偏差之和0)(11=−=−∑∑==Y k Y Y Y ki i k i i , 即这k 个偏差由k 个独立数据受到一个约束条件形成,可以证明它们与k − 1个独立(随机)变量可以相互线性表示,称之为等价于k − 1个独立(随机)变量.一般地,若k 个独立数据受到r 个不相关的约束条件,则它们等价于k − r 个独立(随机)变量.在统计学中,把形成平方和的变量所等价的独立变量个数,称为该平方和的自由度,通常记为f .如上述偏差平方和Q 的自由度为k − 1,即f Q = k − 1.由于平方和的大小与变量个数(或自由度)有关,为了对偏差进行比较,通常考虑偏差平方和与其自由度之商,称为均方和,记为MS ,反映一组数据的平均分散程度,如样本方差∑=−−=ni i X X n S 122)(11就是样本数据偏差的均方和. 四.总平方和分解公式总偏差平方和记为S T 或SST ,其自由度记为f T ,有∑∑==−=r i mj ij T Y Y S 112)(,f T = rm − 1 = n − 1;组内偏差平方和记为S e 或SSE ,其自由度记为f e ,有∑∑==⋅−=r i mj i ij e Y Y S 112)(,f e = r (m − 1) = n − r ;组间偏差平方和记为S A 或SSA ,其自由度记为f A ,有∑∑∑=⋅==⋅−=−=ri i r i m j i A Y Y m Y Y S 12112()(,f A = r − 1.组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应.定理 总偏差平方和S T 可以分解为组内偏差平方和S e 与组间偏差平方和S A 之和,其自由度也可作相应的分解,即S T = S e + S A ,f T = f e + f A ,称之为平方和分解公式. 证:∑∑∑∑==⋅⋅==−+−=−=ri mj i i ij ri mj ij T Y Y Y Y Y Y S 112112()[()(∑∑∑∑∑∑==⋅⋅==⋅==⋅−−+−+−=ri mj i i ij ri mj i ri mj i ij Y Y Y Y Y Y Y Y 11112112))((2)()(A e A e ri i A e ri mj i ij i A e S S S S Y Y S S Y Y Y Y S S +=++=×−++=−−++=∑∑∑=⋅==⋅⋅0]0[(2])()[(2111,且显然有f T = n − 1 = (n − r ) + (r − 1) = f e + f A . 8.1.4检验方法由于组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应,通过比较组内偏差平方和与组间偏差平方和检验因子的显著性.下面将证明在假设所有主效应都等于0成立的条件下,它们的均方和之商服从F 分布.定理 在单因子方差分析模型中,组内偏差平方和S e 与组间偏差平方和S A 满足(1)E(S e ) = (n − r )σ 2,且)(~22r n Se −χσ; (2)∑=+−=ri i A a m r S 122)1()E(σ,且当H 0:a 1 = a 2 = … = a r = 0成立时,)1(~22−r S Aχσ;(3)S e 与S A 相互独立. 证:根据第五章的定理结论知:设X 1 , X 2 , …, X n 相互独立且都服从正态分布N (µ , σ 2),记∑==ni i X n X 11,∑=−=ni i X X S 120)(,则X 与S 0相互独立,且)1(~22−n S χσ.(1)∑∑==⋅−=ri mj i ij e Y Y S 112)(,Y i 1 , Y i 2 , …, Y im 相互独立且都服从正态分布N(µ i , σ 2),∑=⋅=mi ij i Y m Y 11,则∑=⋅−mj i ij Y Y 12)(与⋅i Y 相互独立,且)1(~)(12122−−∑=⋅m Y Y mj i ijχσ,因在不同水平下的样本都相互独立,则∑∑==⋅−ri mj i ij Y Y 112)(与⋅⋅⋅r Y Y Y ,,,21L 也相互独立,且根据独立χ 2变量的可加性知)(~)(121122r rm Y Y r i mj i ij−−∑∑==⋅χσ,故)(~)(1211222r n Y Y S r i mj i ije−−=∑∑==⋅χσσ,即得E(S e ) = (n − r )σ 2;(2)∑∑∑∑∑=⋅=⋅==⋅=⋅−+−+=−+=−=ri i i r i i r i ir i i i r i i A a m m a m a m Y Y m S 112121212(2)()()(εεεεεε,因ε ij (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (0, σ 2 ),有∑=⋅=m j ij i m 11εε (i = 1, 2, …, r ) 相互独立且都服从正态分布,0(2m N σ,∑=⋅=ri i r 11εε,则0)E()E()E(=−=−⋅⋅εεεεi i 且)1(~)(2212−−∑=⋅r mri i χσεε,即m r r i i 212)1()(E σεε−=⎥⎦⎤⎢⎣⎡−∑=⋅, 故21211212)1()E(2)(E )E(σεεεε−+=−+⎥⎦⎤⎢⎣⎡−+=∑∑∑∑==⋅=⋅=r a m a m m a m S ri i r i i i r i i ri iA ,当H 0:a 1 = a 2 = … = a r = 0成立时,∑∑=⋅=⋅−=−=ri i r i i A m Y Y m S 1212)()(εε,故)1(~)(22122−−=∑=⋅r mS ri i Aχσεεσ;(3)因∑∑==⋅−=ri mj i ij e Y Y S 112)(与⋅⋅⋅r Y Y Y ,,,21L 相互独立,有S e 与∑=⋅=ri i Y r Y 11相互独立,且∑=⋅−=ri i A Y Y m S 12(,故S e 与S A 相互独立.由于)(~22r n S e −χσ,当H 0:a 1 = a 2 = … = a r = 0成立时,)1(~22−r S A χσ,且S e 与S A 相互独立,则根据F 分布的定义可知:当H 0成立时,有),1(~)()1(22r n r F MS MS f S f S r n S r S F eAe e A A eA−−==−−=σσ.由于∑=+−=ri i A a m r S 122)1()E(σ,则F 越大,即S A 越大时,越有可能发生a i ≠ 0,则检验的拒绝域为右侧.步骤:假设H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==, 显著水平α ,右侧拒绝域W = {f ≥ f 1 − α (r − 1, n − r )},计算f ,并作出判断. 这是F 检验法.通常列成方差分析表: 来源 平方和 自由度 均方和 F 比 因子 S A f A = r − 1 MS A = S A / f A F = MS A / MS e误差 S e f e = n − r MS e = S e / f A总和S Tf T = n − 1为了计算方便,可给出三个偏差平方和的计算公式.对于一组数据X 1 , X 2 , …, X n ,记∑==ni i X n X 11,则有2112212121)(⎟⎟⎠⎞⎜⎜⎝⎛−=−=−∑∑∑∑====n i i ni i n i i n i i X n X X n X X X , 记∑==m j ij i Y T 1,∑∑∑=====r i mj ij r i i Y T T 111,可得2112211112211211211)(T n Y Y n Y Y n Y Y Y S r i mj ij r i m j ij ri mj ij ri mj ij ri mj ij T −=⎟⎟⎠⎞⎜⎜⎝⎛−=−=−=∑∑∑∑∑∑∑∑∑∑==========, 212211121212121111)(T n T m Y n mr Y m m Y r Y m Y Y m S r i i r i m j ij r i m j ij r i i ri i A −=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=⎥⎦⎤⎢⎣⎡−=−=∑∑∑∑∑∑∑======⋅=⋅, ∑∑∑===−=−=r i i r i mj ijA T e T m Y S S S 121121.例 在饲料养鸡增肥的研究中,现有三种饲料配方:A 1 , A 2 , A 3 ,为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量.实验结果如下表所示: 饲料鸡重/gA 1 1073 1009 1060 1001 1002 1012 1009 1028 A 2 1107 1092 990 1109 1090 1074 1122 1001 A 3 1093 1029 1080 1021 1022 1032 1029 1048 在显著水平α = 0.05下检验这三种饲料对雏鸡增重是否有显著差别. 解:假设H 0:a 1 = a 2 = a 3 = 0 vs H 1:a 1 , a 2 , a 3不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==,平方和显著水平α = 0.05,n = 24,r = 3,m = 8,右侧拒绝域W = { f ≥ f 0.95 (2, 21)} = { f ≥ 3.47},试验数据计算表 因子水平试验数据Y ijT i2i T∑=mj ijY 12A 1 1073 1009 1060 1001 10021012100910288194 67141636 8398024 A 2 1107 1092 990 1109 10901074112210018585 73702225 9230355 A 31093 1029 1080 1021 10221032102910488354 69789316 8728984总和 25133 210633177 26357363计算可得0833.96602513324121063317781112212=×−×=−=∑=T n T m S r i i A ,875.282152106331778126357363112112=×−=−=∑∑∑===r i i r i mj ije T m Y S ,方差分析表来源平方和自由度均方和F 比因子 9660.0833 2 4830.0417 3.5948 误差 28215.875 21 1343.6131 总和 37875.958323有F 比f = 3.5948 ∈ W ,故拒绝H 0 ,接受H 1 ,可以认为这三种饲料对雏鸡增重有显著差别, 并且检验的p 值p = P {F ≥ 3.5948} = 1 − 0.9546 = 0.0454 < α = 0.05. 8.1.5参数估计在方差分析问题中,可对总均值µ ,误差的方差σ 2作参数估计.当检验结果为因子不显著时,各水平下指标的总体均值与总体方差都相同,可将所有水平的指标看作一个统一的总体,全部试验数据是来自正态总体Y ~ N (µ , σ 2 ) 的一个容量为n = rm 的样本,因此样本均值nT Y n Y r i m j ij ==∑∑==111,样本方差1)(111122−=−−=∑∑==n S Y Y n S T r i m j ij.这样总均值µ 和误差的方差σ 2的点估计分别为Y =µˆ,22S =∧σ,置信度为1 − α 的置信区间分别是 ])1([2/1nSn t Y −±∈−αµ,])1()1(,)1()1([22/222/122−−−−∈−n S n n S n ααχχσ.当检验结果为因子显著时,还可进一步对主效应a i 作参数估计. 一.点估计由于试验数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ + a i , σ 2 ),根据最大似然估计法,得到总均值µ ,误差的方差σ 2及主效应a i 的点估计.似然函数∏∏∏∏====⎪⎭⎪⎫⎪⎩⎪⎨⎧−−−==r i mj i ij r i m j ij r a y y p a a a L 11222112212)(exp π21)(),,,,,(σµσσµL ⎭⎬⎫⎩⎨⎧−−−=∑∑==ri mj iij na y 112222)(21exp )π2(1µσσ, 取对数,得∑∑==−−−−−=r i mj i ija yn n L 11222)(21)ln(2π)2ln(2ln µσσ.令关于µ 的偏导数等于0,有⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−−=∂∂∑∑∑∑∑=====r i i r i mj ijri mj i ij a m n y a y L 11121121)1()(221ln µσµσµ0101112112=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∑∑∑∑====µσµσn y n y r i m j ij r i mj ij , 得y y n r i mj ij ==∑∑==111µ,故总均值µ 的最大似然估计为Y =µˆ. 令关于a k 的偏导数等于0,有01)1()(221ln 1212=⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−−=∂∂∑∑==k mj kj mj k kj k ma m y a y a L µσµσ, k = 1, 2, …, r , 得µµ−=−=⋅=∑k mj kj k y y m a 11,故主效应a i 的最大似然估计为Y Y Y a i i i −=−=⋅⋅µˆˆ, i = 1, 2, …, r ,相应,第i 个水平下的总体均值µ i 的最大似然估计为⋅=+=i i i Y a ˆˆˆµµ. 令关于σ 2的偏导数等于0,有0)(2112)(ln 112422=−−+⋅−=∂∂∑∑==r i mj i ija yn L µσσσ,得∑∑==−−=r i m j i ij a y n 1122)(1µσ,故误差的方差σ 2的最大似然估计为nS Y Y n e r i m j i ij M =−=∑∑==⋅∧1122)(1σ.由于E(S e ) = (n − r )σ 2,可知∧2Mσ不是σ 2的无偏估计,修偏得σ 2的无偏估计e eMS rn S =−=∧2σ. 二.置信区间对总均值µ ,误差的方差σ 2及第i 个水平下的总体均值µ i 给出置信区间.第i 个水平下总体均值µ i 的点估计为∑=⋅==mj ij i i Y m Y 11ˆµ,因试验数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m )相互独立且都服从正态分布N(µ i , σ 2),则有),(~2mN Y i i σµ⋅,即)1,0(~N mY ii σµ−⋅,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅i Y 相互独立,则根据χ 2分布的定义可得 )(~ˆ)(2r n t mY r n S m Y i i eii −−=−−⋅⋅σµσσµ,故第i 个水平下总体均值µ i 的置信度为1 − α 的置信区间是]ˆ)([2/1mr n t Y i i σµα−±∈−⋅.总均值µ 的点估计为∑∑====r i mj ij Y n Y 111ˆµ,因数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ i , σ 2 ),有Y 服从正态分布,且µµµ====∑∑∑∑∑=====r i i r i mj i r i m j ij n m n Y n Y 111111)E(1)E(,n n n n Y nY ri mj r i mj ij 222112211211)Var(1)Var(σσσ=⋅===∑∑∑∑====, 得,(~2nN Y σµ,即)1,0(~N nY σµ−,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与Y 相互独立,则根据t 分布的定义可得 )(~ˆ)(2r n t nY r n S n Y e−−=−−σµσσµ, 故总均值µ 的置信度为1 − α 的置信区间是ˆ)([2/1nr n t Y σµα−±∈−.误差的方差σ 2的点估计为r n S e −=∧2σ,且)(~22r n Se −χσ,故误差的方差σ 2的置信度为1 − α 的置信区间是⎥⎦⎤⎢⎢⎢⎣⎡−−−−=⎥⎦⎤⎢⎣⎡−−∈∧−∧−)()(,)()()(,)(22/222/1222/22/12r n r n r n r n r n S r n S e e ααααχσχσχχσ. 例 由前面的鸡饲料对鸡增重问题的数据给出总均值µ ,误差的方差σ 2及三个水平下总体均值µ1 , µ 2 , µ 3的点估计和置信区间(α = 0.05).解:前面已检验知因子显著,则三个水平下总体均值µ1 , µ 2 , µ 3的点估计为25.102488194ˆ111====⋅m T Y µ, 125.107388585ˆ222====⋅m T Y µ,25.104488354ˆ333====⋅m T Y µ,总均值µ 的点估计为2083.10472425133ˆ====n T Y µ,误差的方差σ 2的点估计为6131.13432==−=∧e eMS rn S σ, 置信度为0.95的置信区间是]2008.1051,2992.997[86131.13430796.225.1024[]ˆ)21([975.011=×±=±∈⋅m t Y σµ,]0758.1100,1742.1046[86131.13430796.2125.1073[]ˆ)21([975.022=×±=±∈⋅m t Y σµ,]2008.1071,2992.1017[]86131.13430796.225.1044[]ˆ)21([975.033=×±=±∈⋅mt Y σµ,]7684.1062,6482.1031[]246131.13430796.22083.1047[]ˆ)21([975.0=×±=±∈nt Y σµ,[]9608.2743,2861.7952829.10875.28215,4789.35875.28215)21(,)21(2025.02975.02=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∈χχσe e S S . 8.1.6重复数不等的情形如果每个水平下试验次数不全相等,称为重复数不等的情形,其检验方法与在重复数相等的情形下类似,只是在对数据的表述和处理上有几点区别. 一.数据设第i 个水平A i 下的重复数为m i ,所取得的样本为i im i i Y Y Y ,,,21L ,i = 1, 2, …, r .显然重复数总数为n ,即m 1 + m 2 + … + m r = n . 二.总均值总均值µ 是各水平下总体均值µ i 的以频率nm i为权数的加权平均,即 ∑==+++=r i i i r r m n n m n m n m 122111µµµµµL .三.主效应约束条件第i 个水平下主效应a i = µ i − µ ,则满足011=−=∑∑==µµn m a m ri iir i ii .四.模型单因子方差分析在重复数不等的情形下,统计模型为⎪⎪⎩⎪⎪⎨⎧===++=∑=).,0(;0;,,2,1,,,2,1,21σεεµN a m m j r i a Y ij r i i i i ij i ij 相互独立,且都服从L L 检验H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0.五.平方和的计算记∑==im j ij i Y T 1,∑=⋅==im j ij i i i i Y m m T Y 11,∑∑∑=====ri i ri m j ij T Y T i111,∑∑∑=⋅=====ri i i r i m j ij Y m n Y n n T Y i 11111, 则各平方和的计算公式为n T Y Y n Y Y Y S ri m j ijri m j ijri m j ij T iii21122112112)(−=−=−=∑∑∑∑∑∑======, n T m T Y n Y m Y Y m Y Y S ri ii ri i i ri i i ri m j i A i21221212112)()(−=−=−=−=∑∑∑∑∑==⋅=⋅==⋅, ∑∑∑===−=−=ri ii ri m j ijA T e m T Y S S S i12112. 例 某食品公司对一种食品设计了四种新包装,为了考察哪种包装最受顾客欢迎,选了10个地段繁华程度相似、规模相近的商店做试验,其中两种包装各指定两个商店销售,另两种包装各指定三个商店销售.在试验期内各店货架排放的位置、空间都相同,营业员的促销方法也基本相同,经过一段时间,记录其销售量数据,见下表包装类型销售量数据A 1 12 18 A 2 14 12 13 A 3 19 17 21 A 4 24 30在显著水平α = 0.01下检验这四种包装对销售量是否有显著影响. 解:假设H 0:a 1 = a 2 = a 3 = a 4 = 0 vs H 1:a 1 , a 2 , a 3 , a 4不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==,显著水平α = 0.01,n = 10,r = 4,右侧拒绝域W = { f ≥ f 0.99 (3, 6)} = { f ≥ 9.78},销售量数据计算表计算可得258180101349812212=×−=−=∑=T n m T S ri ii A ,463498354412112=−=−=∑∑∑===ri i i ri mj ije m T Y S ,方差分析表来源平方和自由度均方和F 比因子 258 3 86 11.2174 误差 46 6 7.6667 总和 3049有F 比f = 11.2174 ∈ W ,故拒绝H 0 ,接受H 1 ,可以认为这四种包装对销售量有显著影响, 并且检验的p 值p = P {F ≥ 11.2174} = 1 − 0.9929 = 0.0071 < α = 0.01. 由于因子显著,则四个水平下总体均值µ1 , µ 2 , µ 3 , µ 4的点估计为15230ˆ1111====⋅m T Y µ, 13339ˆ2222====⋅m T Y µ, 19357ˆ3333====⋅m T Y µ, 27254ˆ4444====⋅m T Y µ, 总均值µ 的点估计为1810180ˆ====n T Y µ, 误差的方差σ 2的点估计为6667.72==−=∧e eMS rn S σ, 置信度为0.99的置信区间是]2587.22,7413.7[]26667.77074.315[]ˆ)6([1995.011=×±=±∈⋅m t Y σµ,]9267.18,0733.7[]36667.77074.313[]ˆ)6([2995.022=×±=±∈⋅m t Y σµ,]9267.24,0733.13[]36667.77074.319[]ˆ)6([3995.033=×±=±∈⋅m t Y σµ,]2587.34,7413.19[]26667.77074.327[]ˆ)6([4995.044=×±=±∈⋅m t Y σµ,]2462.21,7538.14[106667.77074.318[]ˆ)6([995.0=×±=±∈nt Y σµ,[]0775.68,4801.26757.046,5476.1846)6(,)6(2005.02995.02=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∈χχσeeS S .§8.2 多重比较上一节是将多个总体作为一个整体进行检验.如果检验结果是因子A 显著,则可以认为各水平下的均值µ i 不全相等,但却不能直接说明µ i 中哪些可以认为相等,哪些可以认为不等.这一节是对各个µ i 两两之间进行比较,对µ i − µ j ,也就是效应差a i − a j 作出估计、检验. 8.2.1效应差的置信区间效应差a i − a j = µ i − µ j 的点估计为⋅⋅−j i Y Y .因Y ik ~ N (µ i , σ 2 ), (i = 1, 2, …, r , k = 1, 2, …, m i ),则),(~121i i m k ik i i m N Y m Y iσµ∑=⋅=,,(~121jj m k jkj j m N Ym Y jσµ∑=⋅=,且当i ≠ j 时,⋅i Y 与⋅j Y 相互独立,可得))11(,(~2σµµji j i j i m m N Y Y +−−⋅⋅, 即)1,0(~11)()(N m m Y Y ji j i j i +−−−⋅⋅σµµ,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅⋅j i Y Y ,相互独立,则根据t 分布的定义可得 )(~11ˆ)()()(11)()(2r n t m m Y Y r n S m m Y Y ji j i j i ej i j i j i −+−−−=−+−−−⋅⋅⋅⋅σµµσσµµ,故效应差a i − a j = µ i − µ j 的置信度为1 − α 的置信区间是]11ˆ)([2/1ji j i j i m m r n t Y Y +⋅−±−∈−−⋅⋅σµµα. 例 由前面的鸡饲料对鸡增重问题的数据给出各效应差µ i − µ j 的点估计和置信区间(α = 0.05). 解:因m 1 = m 2 = m 3 = 8,n = 24,r = 3,有25.102488194111===⋅m T Y ,125.107388585222===⋅m T Y ,25.104488354333===⋅m T Y , 则各效应差µ i − µ j 的点估计分别为875.48125.107325.10242121−=−=−=−⋅⋅∧Y Y µµ, 2025.104425.10243131−=−=−=−⋅⋅∧Y Y µµ, 875.2825.1044125.10733232=−=−=−⋅⋅∧Y Y µµ;因6553.3621875.28215ˆ==−=r n S e σ,有1142.385.06553.360796.211ˆ)21(975.0=××=+⋅j i m m t σ,则各效应差µ i − µ j 的置信度为0.95的置信区间分别是]7608.10,9892.86[]1142.38875.48[]8181ˆ)21([975.02121−−=±−=+⋅±−∈−⋅⋅σµµt Y Y , ]1142.18,1142.58[]1142.3820[]8181ˆ)21([975.03131−=±−=+⋅±−∈−⋅⋅σµµt Y Y , ]9892.66,2392.9[]1142.38875.28[]8181ˆ)21([975.03232−=±=+⋅±−∈−⋅⋅σµµt Y Y . 例 由前面的食品包装对销售量影响问题的数据给出各效应差µ i − µ j 的点估计和置信区间(α = 0.01). 解:因m 1 = 2,m 2 = 3,m 3 = 3,m 4 = 2,n = 10,r = 4,有15230111===⋅m T Y ,13339222===⋅m T Y ,19357333===⋅m T Y ,27254444===⋅m T Y , 则各效应差µ i − µ j 的点估计分别为213152121=−=−=−⋅⋅∧Y Y µµ,419153131−=−=−=−⋅⋅∧Y Y µµ, 1227154141−=−=−=−⋅⋅∧Y Y µµ,619133232−=−=−=−⋅⋅∧Y Y µµ, 1427134242−=−=−=−⋅⋅∧Y Y µµ,827194343−=−=−=−⋅⋅∧Y Y µµ;因7689.2646ˆ==−=r n S e σ,有2653.107689.27074.3ˆ)6(995.0=×=⋅σt ,则各效应差µ i − µ j 的置信度为0.99的置信区间分别是]3709.11,3709.7[]9129.02653.102[]3121ˆ)6([995.02121−=×±=+⋅±−∈−⋅⋅σµµt Y Y , ]3709.5,3709.13[]9129.02653.104[]3121ˆ)6([995.03131−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]7347.1,2653.22[]12653.1012[]2121ˆ)6([995.04141−−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]3816.2,3816.14[]8165.02653.106[]3131ˆ)6([995.03232−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]6291.4,3709.23[]9129.02653.1014[]2131ˆ)6([995.04242−−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]3709.1,3709.17[]9129.02653.108[]2131ˆ)6([995.04343−=×±−=+⋅±−∈−⋅⋅σµµt Y Y .8.2.2 多重比较问题对各个µ i 两两之间进行比较,也就是检验任意两个水平A i 与A j 下的总体均值是否相等,即检验假设j i ij H µµ=:0 vs j i ij H µµ≠:1, i , j = 1, 2, …, r .对于每一个假设ijH 0可以采取上一章两个正态总体的均值比较方法进行检验,但这里需要同时检验2)1(2−=r r C r 个这种假设. 设需要同时检验k 个假设k i H i ,,2,1,0L =,每一个假设的显著水平是α ,即在iH 0成立的条件下,接受i H 0的概率为1 − α ,但在所有k 个假设i H 0都成立的条件下,要同时接受所有假设iH 0的概率就可能远小于1 − α .事实上,此时对每一个假设i H 0,拒绝i H 0的概率为α ,而对所有k 个假设k i H i ,,2,1,0L =,至少拒绝其中一个i H 0的概率最大时可能达到k α ,即同时接受所有假设i H 0的概率就可能只有1 − k α .可见,需要同时检验多个假设时,一般不应逐个检验每一个假设,而是采用多重比较方法同时检验多个假设.多重比较方法,就是针对所有假设,构造一个统一的拒绝域,再逐个进行比较.这里,需要检验假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 在ij H 0成立的条件下,⋅i Y 与⋅j Y 不应相差太大.对每一个假设ijH 0,拒绝域可以取为}|{|ij j i ij c Y Y W ≥−=⋅⋅,其中c ij 是常数.对所有的假设ijH 0,统一的拒绝域取为U U rj i ij j i rj i ijc Y YWW ≤<≤⋅⋅≤<≤≥−==11}|{|.分成重复数相等与不等两种场合进行讨论. 8.2.3重复数相等场合的T 法重复数相等时,各水平是平等的,由对称性,可以要求所有的c ij 相等,记为c ,即统一的拒绝域为}min max {}||max {}|{|1111c Y Y c Y Y c Y YW i ri i ri j i rj i rj i j i ≥−=≥−=≥−=⋅≤≤⋅≤≤⋅⋅≤<≤≤<≤⋅⋅U .因Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ i , σ 2),有,(~2mN Y i i σµ⋅.当所有的假设ijH 0都成立时,即µ 1 = µ 2 = … = µ r = µ ,有,(~2mN Y i σµ⋅,则)1,0(~N mY i σµ−⋅.但σ 未知,用r n S e−=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅i Y 相互独立,则根据t 分布的定义可得 )()(~ˆ)(2e i ei f t r n t mY r n S m Y =−−=−−⋅⋅σµσσµ.统一的拒绝域W 的形式可改写为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥−−−=≥−=⋅≤≤⋅≤≤⋅≤≤⋅≤≤m c m Y m Y c Y Y W i r i i r i i r i i r i σσµσµˆˆmin ˆmax }min max {1111, 其中mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=是从分布为t ( f e )的总体中抽取容量为r 的样本所得的最大与最小顺序统计量之差(极差),称之为t 化极差统计量,其分布记为q (r , f e ).显然,t 化极差统计量Q 的分布q (r , f e ) 只与水平个数r 以及t 分布的自由度f e 有关,而与参数µ , σ 2及重复数m 无关.分布q (r , f e )的准确形式比较复杂,通常采用随机模拟方法得到其分位数q 1 − α (r , f e ).对于给定的容量r 及自由度f e ,随机模拟方法是(1)随机生成r 个标准正态分布N (0, 1) 随机数x 1 , x 2 , …, x r ,将这r 个随机数按由小到大的顺序排列,得到其最小随机数x (1) 和最大随机数x (r ) ;(2)随机生成1个自由度为f e 的χ 2分布χ 2 ( f e ) 随机数y ; (3)计算er f y x x q )1()(−=;(4)重复(1)至(3)步N 次,得到t 化极差统计量Q 的N 个观测值,只要N 非常大(如10 4或10 5次),就可得q (r , f e )的各种分位数q 1 − α (r , f e )的近似值.当显著水平为α 时,拒绝域{}),(ˆ1ef r q Q m c Q W ασ−≥=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=,有m c f r q e σαˆ),(1=−,可得 mf r q c e σαˆ),(1⋅=−,再逐个将||⋅⋅−j i Y Y 与c 比较,得出每一对µ i 与µ j 是否有显著差异的结论.步骤:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 统计量mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=,显著水平α ,右侧拒绝域{}),(ˆ1e f r q Q m c Q W ασ−≥=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=,计算mf r q c e σαˆ),(1⋅=−,逐个将||⋅⋅−j i Y Y 与c 比较,得出结论.例 由前面的鸡饲料对鸡增重影响问题的数据对各因子作多重比较(α = 0.05).解:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ 3, 统计量mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=,显著水平α = 0.05,r = 3,f e = n − r = 21,右侧拒绝域W = {Q ≥ q 0.95 (3, 21)} = {Q ≥ 3.57},因m = 8,6553.3621875.28215ˆ==−=r n S e σ,有2658.4686553.3657.3=×=c , 由于c Y Y >=−=−⋅⋅875.48|125.107325.1024|||21,故µ 1与µ 2有显著差异;c Y Y <=−=−⋅⋅20|25.104425.1024|||31,故µ 1与µ 3没有显著差异; c Y Y <=−=−⋅⋅875.28|25.1044125.1073|||32,故µ 2与µ 3没有显著差异;8.2.4重复数不等场合的S 法重复数不等时,因)1,0(~11)()(N m m Y Y ji j i j i +−−−⋅⋅σµµ,但σ 未知,用r n S e−=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅⋅j i Y Y ,相互独立,则根据t 分布的定义可得 )()(~11ˆ)()(e ji j i j i f t r n t m m Y Y =−+−−−⋅⋅σµµ,当所有的假设ijH 0都成立时,即µ 1 = µ 2 = … = µ r = µ ,有)(~11ˆe ji j i ij f t m m Y Y T +−=⋅⋅σ,得),1(~11ˆ)(222e j i j i ijij f F m m Y Y T F ⎟⎟⎠⎞⎜⎜⎝⎛+−==⋅⋅σ,从而统一的拒绝域可以取为U U r j i ji j i r j i ji j i c m m Y Y m m c Y Y W ≤<≤⋅⋅≤<≤⋅⋅≥+−=+≥−=11}11||{}11|{| }ˆmax {}ˆ11ˆ)(max {}ˆ11ˆ||max {221222211σσσσσc F c m m Y Y cm m Y Y ij r j i j i j i r j i ji j i r j i ≥=≥⎟⎟⎠⎞⎜⎜⎝⎛+−=≥+−=≤<≤⋅⋅≤<≤⋅⋅≤<≤,可以证明,),1(~1max 1e ij rj i f r F r F −−≤<≤&.当显著水平为α 时,拒绝域{}),1(ˆ)1(122e f r f F r c F W −≥=⎭⎬⎫⎩⎨⎧−≥=−ασ,有221ˆ)1(),1(σα−=−−r c f r f e ,可得),1()1(ˆ1e f r f r c −−=−ασ,因此⎟⎟⎠⎞⎜⎜⎝⎛+−−=+=−j i e ji ij m m f r f r m m c c 11),1()1(ˆ111ασ, 再逐个将||⋅⋅−j i Y Y 与ji ij m m cc 11+=比较,得出每一对µ i 与µ j 是否有显著差异的结论. 步骤:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 统计量),1(~11ˆ)1()(max1max 2211e j i j i rj i ijrj i f r F m m r Y Y r F F −⎟⎟⎠⎞⎜⎜⎝⎛+−−=−=⋅⋅≤<≤≤<≤&σ,显著水平α ,右侧拒绝域{}),1(ˆ)1(122e f r f F r c F W −≥=⎭⎬⎫⎩⎨⎧−≥=−ασ, 计算⎟⎟⎠⎞⎜⎜⎝⎛+−−=+=−j i e ji ij m m f r f r m m cc 11),1()1(ˆ111ασ, 逐个将||⋅⋅−j i Y Y 与c ij 比较,得出结论.例 由前面的食品包装对销售量影响问题的数据对各因子作多重比较(α = 0.01). 解:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ 4, 统计量),1(~11ˆ)1()(max)1(max 224141e j i j i j i ij j i f r F m m r Y Y r F F −⎟⎟⎠⎞⎜⎜⎝⎛+−−=−=⋅⋅≤<≤≤<≤&σ,显著水平α = 0.01,r = 4,f e = n − r = 6,右侧拒绝域W = {F ≥ f 0.99 (3, 6)} = {F ≥ 9.78},因m 1 = m 4 = 2,m 2 = m 3 = 3,7689.2646ˆ==−=r n S e σ,有9981.1478.937689.2=××=c , 则6914.13312134241312=+====cc c c c ,9981.14212114=+=c c ,2459.12313123=+=c c , 由于12212|1315|||c Y Y <=−=−⋅⋅,故µ 1与µ 2没有显著差异;13314|1915|||c Y Y <=−=−⋅⋅,故µ 1与µ 3没有显著差异; 144112|2715|||c Y Y <=−=−⋅⋅,故µ 1与µ 4没有显著差异; 23326|1913|||c Y Y <=−=−⋅⋅,故µ 2与µ 3没有显著差异; 244214|2713|||c Y Y >=−=−⋅⋅,故µ 2与µ 4有显著差异; 34438|2719|||c Y Y <=−=−⋅⋅,故µ 3与µ 4没有显著差异.§8.3 方差齐性检验在单因子方差分析统计模型中,总是假设各个水平下的总体方差都相等,即222221σσσσ====r L ,称之为方差齐性.但方差齐性不一定自然成立,需要对其进行检验,检验的原假设与备择假设为H 0:22221r σσσ===L vs H 1:22221,,,r σσσL 不全相等,称为方差齐性检验.各水平下的总体方差2i σ分别是以该水平下的样本方差2i S 作为点估计,以由22221,,,r S S S L 构成的函数作为检验的统计量.分成重复数相等与不等两种场合进行讨论. 8.3.1重复数相等场合的Hartley 检验法重复数相等时,样本方差⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−−=−−=∑∑∑=⋅==⋅m T Y m Y m Y m Y Y m S i m j ij i m j ij m j i ij i2122121221111)(11,i = 1, 2, …, r , 各水平是平等的,以r 个水平下样本方差),,2,1(,2r i S i L =的最大值与最小值之比作为检验的统计量H ,即},,,min{},,,max{2222122221r r S S S S S S H L L =.在方差齐性成立的条件下,统计量H 的分布只与水平个数r 及样本方差2i S 的自由度f = m − 1有关,记为H (r , f ).分布H (r , f )的准确形式比较复杂,通常采用随机模拟方法得到其分位数H 1 − α (r , f ).显然有H ≥ 1,且H 的观测值越接近1,方差齐性越应该成立,因此拒绝域取为W = {H ≥ H 1 − α (r , f )}.步骤:假设H 0:22221r σσσ===L vs H 1:22221,,,r σσσL 不全相等,统计量},,,min{},,,max{2222122221rr S S S S S S H L L =,显著水平α ,右侧拒绝域W = {H ≥ H 1 − α (r , f )}, 计算H ,并作出判断. 这称之为Hartley 检验法.例 由前面的鸡饲料对鸡增重影响问题的数据采用Hartley 检验法进行方差齐性检验(α = 0.05).解:假设H 0:232221σσσ== vs H 1:232221,,σσσ不全相等,统计量},,min{},,max{232221232221S S S S S S H =, 显著水平α = 0.05,且r = 3,f = m − 1,右侧拒绝域W = {H ≥ H 0.95 (3, 7)} = {H ≥ 6.94},根据试验数据计算表,可得T 1 = 8194,T 2 = 8585,T 3 = 8354,8398024121=∑=mj j Y ,9230355122=∑=mj jY,8728984123=∑=mj j Y ,则9286.759)881948398024(71221=−=S ,9821.2510885859230355(71222=−=S ,9286.759)883548728984(71223=−=S ,可得W H ∉==3042.39286.7599821.2510,故拒绝H 0 ,接受H 1 ,可以认为三个水平下的总体方差满足方差齐性.8.3.2 重复数不等场合大样本情形的Bartlett 检验法重复数不等时,样本方差⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−−=−−=∑∑∑=⋅==⋅i i m j ij i i i m j ij i m j i ij i im T Y m Y m Y m Y Y m S i i i 2122121221111)(11,i = 1, 2, …, r , 记i i m j ijm j i ij i m T Y Y Y Q ii21212)(−=−=∑∑==⋅为第i 个水平下的偏差平方和,f i = m i − 1为其自由度,有i i i f Q S =2,且e r i m j i ijr i i S Y YQ i=−=∑∑∑==⋅=1121)(,e ri ir i i f r n r mf =−=−=∑∑==11,则组内偏差均方和∑∑∑=======ri i ei ri ii e ri ie e e e Sf f S f f Q f f S MS 1212111, 即MS e 等于样本方差22221,,,r S S S L 以各自自由度所占比例为权数的加权算术平均,而相应的加权几何平均记为GMS e ,即∏==ri f f i e eiS GMS 12)(.以MS e 与GMS e 之商的一个函数作为检验统计量.可以证明,大样本情形,在方差齐性成立的条件下,)1(~])ln()ln([1ln 212−−==∑=r S f MS f C GMS MS C f B ri i i e e e e e χ&,其中常数⎟⎟⎠⎞⎜⎜⎝⎛−−+=∑=e r i i f f r C 11)1(3111. 由于算术平均必大于等于几何平均,即MS e ≥ GMS e ,当且仅当所有2i S 都相等时等号成立,即B 的观测值越小,方差齐性越应该成立,因此拒绝域取为)}1({21−≥=−r B W αχ.。

相关主题