当前位置:文档之家› 空气动力学基本公式集合

空气动力学基本公式集合

空气动力学基本公式集合热力学参数及关系δq+δw=de p=ρRT R=287J/(kg∙K)ℎ=e+pρd ℎ=de+pdv+vdp e=C V T ℎ=C p TC p−C V=R γ=C p/C V C p=γRγ−1C V=Rγ−1可逆过程(不一定绝热,等熵过程为可逆且绝热的过程)Tds=de+pdv=dℎ−vdp=dℎ−1ρdp s2−s1=C p lnT2T1−R lnp2p1=C V lnT2T1+R lnρ1ρ2等熵关系式p2 p1=(ρ2ρ1)γ=(T2T1)γγ−1滞止参数ℎ0=ℎ+V22=C p T+V22=γRTγ−1+V22=a2γ−1+V22=γRT0γ−1=a02γ−1=a∗2γ−1+a∗22T0 T =1+γ−12Ma2p0p=(1+γ−12Ma2)γγ−1ρ0ρ=(1+γ−12Ma2)1γ−1临界参数T∗T0=(a∗a0)2=2γ+1p∗p0=(2γ+1)γγ−1ρ∗ρ0=(2γ+1)1γ−1a∗=√2γRT0γ+1定义速度系数λ=va∗=√(γ+1)Ma22+(γ−1)Ma2Ma=√2λ2(γ+1)−(γ−1)λ2定义气体动力学函数τ(λ)=TT0=(1−γ−1γ+1λ2) π(λ)=pp0=(1−γ−1γ+1λ2)γγ−1ε(λ)=ρρ0=(1−γ−1γ+1λ2)1γ−1激波与膨胀波正激波关系式Ma 2=√2+(γ−1)Ma 122γMa 12−(γ−1)p 2p 1=1+2γγ+1(Ma 12−1) ρ2ρ1=u 1u 2=(γ+1)Ma 122+(γ−1)Ma 12 T 2T 1=[1+2γγ+1(Ma 12−1)]2+(γ−1)Ma 12(γ+1)Ma 12 T 02T 01=1 p 02p 01=[(γ+1)Ma 122+(γ−1)Ma 12]γγ−1[1+2γγ+1(Ma 12−1)]1γ−1s 2−s 1=C p ln {[1+2γγ+1(Ma 12−1)]2+(γ−1)Ma 12(γ+1)Ma 12}−R ln [1+2γγ+1(Ma 12−1)] 斜激波关系式tan θ=2cot βMa 12sin 2β−1Ma 12(γ+cos 2β)+2Ma n,1=Ma 1sin β Ma 2=Ma n,2sin (β−θ) Ma n,2=√2+(γ−1)Ma n,122γMa n,12−(γ−1)p 2p 1=1+2γγ+1(Ma n,12−1) ρ2ρ1=(γ+1)Ma n,122+(γ−1)Ma n,12 T 2T 1=[1+2γγ+1(Ma n,12−1)]2+(γ−1)Ma n,12(γ+1)Ma n,12 T 02T 01=1 p 02p 01=[(γ+1)Ma n,122+(γ−1)Ma n,12]γγ−1[1+2γγ+1(Ma n,12−1)]1γ−1s 2−s 1=C p ln {[1+2γγ+1(Ma n,12−1)]2+(γ−1)Ma n,12(γ+1)Ma n,12}−R ln [1+2γγ+1(Ma n,12−1)] 膨胀波关系式 马赫角μμ1=arcsin1Ma 1 μ2=arcsin 1Ma 2普朗特—迈耶函数ν(Ma )=√γ+1γ−1arc tan √γ−1γ+1(Ma 2−1)−arc tan √Ma 2−1 θ=ν(Ma 2)−ν(Ma 1) T 2T 1=T 2/T 02T 1/T 01=2+(γ−1)Ma 122+(γ−1)Ma 22 p 2p 1=p 2/p 02p 1/p 01=(2+(γ−1)Ma 122+(γ−1)Ma 22)γγ−1准一维流动与喷管流动面积-速度关系式dA A =(Ma2−1)duudMaMa=1+γ−12Ma21−Ma2dAAA A∗=1Ma[(2γ+1)(1+γ−12Ma2)]γ+12(γ−1)(AA∗)2=(γ−1)(2γ+1)γ+1γ−12[1−(pp0)γ+1γ](pp0)2γ无粘流基本方程雷诺输运定理及随体导数D Dt ∭ϕdv=ððt∭ϕdv+∯ϕ(V∙n)dADϕDt=ðϕðt+(V∙∇)ϕ=ðϕðt+V∙∇ϕ连续方程Dm Dt =DDt∭ρdv=ððt∭ρdv+∯ρ(V∙n)dA=∭[ðρðt+∇∙(ρV)]dv=0ðρðt +∇∙(ρV)=DρDt+ρ∇V=0ðρðt+ð(ρu)ðx+ð(ρv)ðy+ð(ρw)ðz=0定常不可压ðu ðx +ðvðy+ðwðz=0动量方程D Dt ∭ρVdv=ððt∭ρVdv+∯ρV(V∙n)dA=∭[Vðρðt+ρðVðt+V∇∙(ρV)+ρV(∇∙V)]dv =∭{ρ[ðVðt+V(∇∙V)]}dv=∭ρfdv−∯pdA+Fμ=∭(ρf−∇p)dv+Fμ不考虑粘性力则为欧拉方程DV Dt =ðVðt+V(∇∙V)=f−1ρ∇pðu iðt+u jðu iðx j=f i−1ρðpðx i{ ðu ðt +u ðu ðx +v ðu ðy +w ðu ðz =f x −1ρðp ðx ðv ðt +u ðv ðx +v ðv ðy +w ðv ðz =f y −1ρðp ðy ðw ðt +u ðw ðx +v ðw ðy +w ðw ðz =f z−1ρðpðz葛罗米柯运动微分方程(把涉及运动旋涡部分的项分离出来而使研究无旋运动时方程简化) 利用矢量恒等式改写欧拉方程(V ∙∇)V =∇(V 22)−V ×(∇×V ) → ðV ðt + ∇(V 22)−V ×(∇×V )=−1ρ∇p +f{ðu ðt +ððx (V 22)+2(ωy w −ωz v)=−1ρðpðx +f x ðv ðt +ððx (V 22)+2(ωz u −ωx w )=−1ρðp ðy +f y ðw ðt +ððx (V 22)+2(ωx v −ωy u)=−1ρðp ðz +fz克罗克运动方程(在葛罗米柯运动方程基础上吧焓梯度和熵梯度与旋涡量建立联系) 对于理想气体,忽略质量力后的葛罗米柯运动微分方程为ðV ðt + ∇(V 22)−V ×(∇×V )=−1ρ∇p 由热力学关系的矢量形式改写上述方程T∇s =∇ℎ−1ρ∇p → ðV ðt + ∇(V 22)−V ×(∇×V )=T∇s −∇ℎ由滞止焓改写上述方程∇ℎ0=∇ℎ+ ∇(V 22) → ðVðt−V ×(∇×V )=T∇s −∇ℎ0定常状态V ×(∇×V )=∇ℎ0−T∇s均能流(滞止焓均匀分布)、均熵流及均能均熵流V ×(∇×V )=−T∇s V ×(∇×V )=∇ℎ0 V ×(∇×V )=0能量方程DE Dt =δQ dt +δWdtD Dt ∭ρ(e +V 22)dv =∭ρq dv +∯k (∇T ∙n )dA +∭ρf ∙V dv −∯p (V ∙n )dA +W μ不考虑粘性力∭D Dt [ρ(e +V 22)]dv =∭[ρq +∇(k∇T )+ρf ∙V −∇∙(pV )]dvρD Dt (e +V 22)=ρq +∇(k∇T )+ρf ∙V −∇∙(pV ) ∇∙(pV )=∇∙(p ρ∙ρV)=p ρ∇∙(ρV )+ρV ∙∇(p ρ)=p ρ(DρDt −ðρðt )+ρ[D Dt (p ρ)−ððt (p ρ)]=ρD Dt (p ρ)−ðpðtρD Dt (e +V 22)=ρq +∇∙(k∇T )+ρf ∙V −[ρD Dt (p ρ)−ðpðt ] ρD Dt (e +p ρ+V 22)=ρq +∇∙(k∇T )+ρf ∙V +ðp ðt =ρD Dt (ℎ+V 22) 设质量力有势且在固定点处不随时间变化f =∇U → ρf ∙V =ρ∇U ∙V =ρ(DU Dt −ðU ðt )=ρDU DtρD Dt (ℎ+V 22−U)=ρq +∇∙(k∇T )+ðpðt绝热无机械功输入输出的定常流动ℎ+V 22−U =const熵方程dS ≥δQ T DS Dt ≥Q TDS Dt =D Dt ∭ρsdv =ððt ∭ρsdv +∯ρs (V ∙n )dA =∭[ð(ρs )ðt +∇∙(ρsV )]dv ≥∭ρqT dv ð(ρs )ðt +∇∙(ρsV )≥ρq T → ρðs ðt +s ðρðt +s ∙∇(ρV )+ρV ∙∇s ≥ρq T → ðs ðt +V ∙∇s =Ds Dt ≥q T粘性流体基本方程连续方程ðρðt +∇∙(ρV )= DρDt +ρ∇∙V =0 ðρðt +ð(ρu )ðx +ð(ρv )ðy +ð(ρw )ðz=0 定常不可压ðu ðx +ðv ðy +ðw ðz=0 动量方程DV Dt =ðV ðt +V (∇∙V )=f −1ρ∇p +f μ ðu i ðt +u j ðu i ðx j =f i −1ρðpðx i+f μi 流体表面应力张量Π=[σxτxy τxzτyxσy τyz τzx τzyσz ]=[2μðu ðx −23μ∇∙V −p μ(ðu ðy +ðvðx )μ(ðu ðz +ðwðx )…2μðv ðy −23μ∇∙V −p μ(ðv ðz +ðw ðy )……2μðw ðz −23μ∇∙V −p ] s ij =12(ðu i ðx j +ðu j ðx i ) m ij =2μs ij − 23μ∇∙Vδij πij =m ij −pδijDV Dt =ðV ðt +V (∇∙V )=f +∇∙Π ðu i ðt +u j ðu i ðx j =f i +1ρðπji ðx j{Du Dt =ðu ðt +u ðu ðx +v ðu ðy +w ðu ðz =f x +1ρ(ðσx ðx +ðτyx ðy +ðτzxðz )Dv Dt =ðv ðt +u ðv ðx +v ðv ðy +w ðv ðz =f y +1ρ(ðτxy ðx +ðσy ðy +ðτzyðz )Dw Dt=ðw ðt +u ðw ðx +v ðw ðy +w ðw ðz =f z +1ρ(ðτxz ðx +ðτyz ðy +ðσz ðz )N —S 方程ρDu i Dt =ρðu i ðt +ρu j ðu i ðx j =ρf i −ðp ðx i +ððx j [μ(ðu i ðx j +ðu j ðx i )]−23ððx i (μðu j ðx j) { ρDu Dt =ρf x −ðp ðx +2ððx (μðu ðx )+ððy [μ(ðu ðy +ðv ðx )]+ððz [μ(ðu ðz +ðw ðx )]−23ððx (μ∇∙V )ρDv Dt =ρf y −ðp ðy +ððx [μ(ðu ðy +ðv ðx )]+2ððy (μðv ðy )+ððz [μ(ðv ðz +ðw ðy )]−23ððy (μ∇∙V )ρDw Dt =ρf z−ðp ðz +ððx [μ(ðu ðz +ðw ðx )]+ððy [μ(ðv ðz +ðw ðy )]+2ððz (μðw ðz )−23ððy(μ∇∙V )对于通常情况即不考虑μ随温度的变化,上述方程可化为ρDu i Dt =ρðu i ðt +ρu j ðu i ðx j =ρf i −ðp ðx i +μ∆u i +μ3ð2u jðx i ðx j ρDV Dt =ρðV ðt +ρV (∇∙V )=ρf −∇p +μ∆V +μ3∇(∇∙V )能量方程动能方程D Dt (V22)=uf x+vf y+wf z+1ρ[u(ðσxðx+ðτyxðy+ðτzxðz)+v(ðτxyðx+ðσyðy+ðτzyðz)+w(ðτxzðx+ðτyzðy+ðσzðz)]D Dt (u i u i2)=u i f xi+u iρðπjiðx j=u i f xi+u iρðm jiðx j+u iρðpðx j=u i f xi+1ρð(m ji u i)ðx j−1ρð(pu i)ðx j+pρðu iðx j−m jiρðu iðx j上式最左侧为流体微团单位质量随时间变化率,最右侧第一项为单位时间内体力对单位质量流体所做的体力功,第二项为粘性力对运动单位质量的流体微团所输运的机械能,第三项为压力对单位质量流体做的功,第四项为体积膨胀与压力乘积的膨胀功,第五项为流体为抵抗变形的粘性力所做的变形功,为耗散项。

相关主题