微电子器件第二章 PN结
qVD kT
2.1.5、平衡PN结载流子浓度分布
势垒区本征费米能级 随x的变化
Ei x Eip qV x
(1)空间电荷区内的载流子浓度
EF Ei x kT
Ei x EF kT
nx ni e
px ni e
(2)空间电荷区边界的少数载流子 浓度
内建电场促使 少子漂移 内建电场阻止 多子扩散
多子的扩散和少子的漂移达到动态平衡。
2.1.2、空间电荷区
N
XN
XP
P
空间电荷区XM
基本概念:
空间电荷 空间电荷区
2.1.3、平衡PN结能带图 (没有外加偏压)
空间电荷区
P
xp
电势
内建电场
N
xn
VD
形成PN结前
电子势能 能带
qVD
qVD
EC EF Ei EV
-Xp 0
空间电荷区
Xn
求VD :
电势 电子势能 能带
P
内建电场
N
VD
qVD
qVD
EC EF Ei
EV
2.1.4、PN结内建电势差 (1)突变结:
kT N A N D 式中 NA:P区掺杂浓度; VD ln ND:N区掺杂浓度 q ni2
kT 0.026 V q
ni :本征载流子浓度
T 300K
2.2.4、V-I 特性方程
2.2.4、V-I 特性方程 肖克莱方程
I I0 e
qVA / kT
1
qDP Pn 0 qDn n p 0 I0 A Ln LP
反向电流:
2.2.4、V-I 特性方程
单边结近似
NA>>ND
2 P i
对于P+N结
qDP Pn 0 qVF / kT qD n qVF / kT I IP A e A e LP Lp N D
空穴扩散
2.2.2、反向PN结
(1)反向PN结的少子抽取 反向电压使 势垒区宽度变宽 势垒高度变高
外加电场与内建电场方向相同 增强空间电荷区中的电场 破坏扩散漂移运动平衡 漂移运动强于扩散运动 抽取少子
Ln
Lp
N
漂移
P
P区
扩散
反向偏置时,漂移大于扩散
漂移
空穴: N区
电子: P区
N区
扩散
2.2.2、反向PN结
P区 N区
(2)反向PN结中载流子的运动
jp
1、反向电流很小 2、在少子扩散长度内有扩散和 产生 3、反向电流趋于不变
jn
Ln
Lp
2.2.3 非平衡PN结的能带图
(1)正偏
(2)反偏
2.2.4、V-I 特性方程
1、理想PN结模型
(1)小注入。即注入的非平衡少数载流子浓度远 低于平衡多子浓度,即掺杂浓度。 (2)外加电压全部降落在势垒区,势垒区以外为 电中性区。 (3)忽略势垒区载流子的产生-复合作用。通过势 垒区的电流密度不变。 (4)忽略半导体表面对电流的影响。 (5)只考虑一维情况。
J J D J RG qLn
np0
n
e
qVF kT
ni 2 kT qxm e 2
qV F
2.3.11
讨论: ①势垒区复合电流随外加电压的增加比较缓慢,例如外加电压 增加0.1V,正向注入电流可增加50倍,而势垒区复合电流只增 加7倍,因此只有在比较低的正向电压,或者说比较小的正向电 流时,空间电荷区复合电流才起重要作用; ②势垒区复合电流正比于ni ,而正向注入的扩散电流却正比于 ni2,所以ni 越大,复合电流的影响就越小。硅的本征载流子浓 度比锗小,在小电流范围内复合电流的影响就必须考虑,它是 使硅晶体管小电流下β下降的原因。
np0 qVD qVD nn 0 exp pn 0 p p 0 exp kT kT
2.2 PN结直流V-I特性(肖克莱方程)
非平衡PN结
处于一定偏置状态下的PN结称 为非平衡PN结。 当P区接电源的正极,N区接电 源的负极,称为正向PN结。反 之,则称反向PN结。 外加电压基本降落在势垒区
2.1 PN结的形成及空间电荷区 2.1.1、PN结的形成及类型 1、PN 结含义: 在一块N型(或P型)半导体单晶上,用特定的工 艺方法把P型(或N型)杂质掺入其中,使这块单晶 相连的二个不同区域分别具有N型和P型的导电类型, 在二者交界面的过渡区即称为PN结。
PN结
P
N
半导体二极管
半导体二极管按结构分为点接触型和面接触型 点接触型(a)适用于高频电路,面接触型(b)适用于整流
基本概念:
内建电场 内建电势差VD
形成PN结后 平衡PN结有统一的费米能级
2.1.3、PN结能带图
空间电荷区
平衡PN结能带图
电势
P
xp VD
内建电场
N
xn
空间电荷区又称 势垒区 耗尽层
注意:由“多子”变成“少子”
电子势能 能带
qVD
qVD
EC EF Ei EV
2.1.4、PN结内建电势差
2.2.4、V-I 特性方程
2.坐标 以xn、xp为坐标原点 分别建立坐标系。 步骤: ① 求解“非少子”的扩 散方程 ② →求“非少子”浓度 的边界值 ③ →求“非少子”浓度 梯度 ④ →分别求电子、空穴 的扩散电流密度 ⑤ →求PN结电流
电子 空穴
dx d P n j p qD p dx
dN ( x) a j dx
x x j
αj
xj x
c
2.1.1、PN结的形成及类型
杂 质 浓 度
突变结近似 适用于表面杂质浓度 较高、结深较浅的缓 变结
ND -NA
xj
杂 质 浓 度
x
xj
x
2.1.2、空间电荷区 空间电荷区的形成 载流子浓度差
多子的扩散运动
由杂质离子形成 空间电荷区
空 间 内电 建荷 电区 场形 成
1 np ni2 U n p 2ni
2.3.5
np ni2 U p n n1 n p p1
2.3.1
式中的分子在空间电荷区中是不随位置变化的, U的极大值就 发生在n + p为极小值的地方。利用(2.3.2)、(2.3.3)式对x求极 小值可以得到,n + p的极小值发生在
(7)当T升高时,JF增大,JR增大。
2.3 实际PN结的特性
2.3.1 PN结空间电荷区中的复合电流
正偏时,通过PN结的总电流为:
J J n J p J RG
势垒区复合电流
电子和空穴在空电区中, np ni2 通过复合中心复合的净复 U p n n1 n p p1 合率U可以写为
jn qDn
d n p
2.2.4、V-I 特性方程
2.2.4、V-I 特性方程
PN结N区边界处少子扩散电流密度: PN结P区边界处少子扩散电流密度: qV j p q pN 0 exp kT qV jn q nP 0 exp kT Dn 1 Ln Dp 1 Lp
2.3.1
式中,n和p分别为电子和空穴的浓度,n1和p1为费密能级EF与复 合中心能级Et重和时的导带电子浓度和价带空穴浓度
势垒区载流子浓度
nx ni e
EF n Ei x
kT
2.3.2
px ni e
Ei x EF p kT
2.3.3
Ln
,
n p 0 qV kT e 1 J J n qLn n
2.3.10
物理含义是:注入到P区的电子电流密度Jn ,就是单位时间内 在扩散长度Ln内复合的电子电荷量。这个电流是由非平衡少子 在扩散区内复合形成的,故称其为扩散电流,记为JD。 流过 N+P结的正向电流应为( 2.3.10)式和( 2.3.9)式之和, (2.3.10)式中的正向电压V也用 VF 表示,可得
漂移
N区
2.2.1、正向PN结
P区 N区 jp jn
(2)正向PN结中载流子的运动 电流在 N 型区中主要由电子携带 电流在 P 型区中主要由空穴携带
Ln Lp
通过 PN 结的电流在扩散区内实 现电流载体转换
正向的PN结电流输运过程
电流传输与转换(载流子的扩散和复合过程〕
空穴漂移
电子漂移
P
N
电子扩散
微电子器件与IC设计
第2章 PN 结
半导体器件物理
据统计:半导体器件主要有67种,另外还有110个 相关的变种 所有这些器件都由少数基本模块构成: • pn结 •金属-半导体接触 • MOS结构 • 异质结 • 超晶格
两种或两种以上不同的极薄(几埃到几百埃)半导体单晶薄膜交替地生长在一 起而形成的周期性结构材料。在原子尺度上人工设计和 改变材料的结构参数和组分, 改变材料的能带结构和物理性能。
(c)是硅平面工艺型二极管的结构 图,是集成电路中常见的一种形式。
2.1.1、PN结的形成及类型 2、PN结的类型 (1)、突变结
P区
N区
单边突变结 P+N结 N+P结
杂 质 浓 度
NA ND xj x
2.1.1、PN结的形成及类型(2)、缓变结杂来自质 浓 度NP
ND -NA
xj
x
2.1.1、PN结的形成及类型
对于锗PN结,通常可取VD=0.3—0.4V
对于硅PN结,通常可取 VD=0.6—0.7V