当前位置:文档之家› 钢筋混凝土框架结构抗震性能分析

钢筋混凝土框架结构抗震性能分析

钢筋混凝土框架结构抗震性能分析摘要:根据汶川地震震害现场调查记录及欧洲抗震规范的相关抗震条文,探讨了造成钢筋混凝土框架结构震害的原因,对框架结构的震害进行了分析,特别详细介绍了地震中填充墙框架结构的各种表现,分析其破坏机理,在此基础上为该类建筑物的抗震设计提出建议。

关键词:欧洲规范;钢筋混凝土;框架结构;抗震性能Abstract: according to wenchuan earthquake damage scene investigation records and European seismic code of seismic provisions related, discusses the cause of reinforced concrete frame structure, the causes of the earthquake damage to frame structure of the earthquake damage are analyzed, especially introduced the earthquake in the frame structure of the fill walls of performance, analyzed its failure mechanism, and in this foundation for the building of the seismic design are proposed.Keywords: European standard; Reinforced concrete; Frame structure; Seismic performance1引言2008年5月12日14时28分,在四川省汶川县映秀镇附近发生8.0级的地震。

此次地震倒塌较多的是砖混结构、底层框架上部砖混结构和钢筋混凝土框架结构的建筑,震害统计资料如表1所示[1]。

从各地震害看,经过抗震设计的房屋基本上经受住地震考验。

在倒塌和严重破坏的结构中,钢筋混凝土框架结构一直被认为是抗震性能较好的一种,因此其破坏倒塌的原因受到格外关注。

本文通过框架结构震害介绍,探讨其倒塌和破坏的原因及解决办法, 详细介绍了地震中填充墙框架结构的各种表现,分析其破坏机理,在此基础上为该类建筑物的抗震设计提出建议。

表1.建筑震害情况统计(按结构形式分类)可以使用加固后可以使用停止使用立刻拆除砌体结构42(21%)74(37%)33(16%)52(26%)砌体-框架结构20(488%)9(21%)4(10%)9(21%)框架结构66(54%)40(32%)8(7%) 9(7%)框架-剪力墙结构5(71%)2(29%)0(0%) 0(0%)钢结构 4(57%)3(43%)0(0%) 0(0%)2框架结构震害浅析2.1框架结构薄弱层的破坏(1)强梁弱柱造成。

在倒塌的框架中有很多是框架柱的截面小,而梁的截面较大。

另外,梁实配钢筋较多,钢筋直径也大;相比而言,柱实配钢筋要少得多,这就是在构件截面上造成的“强梁弱柱”。

配筋设计中,跨度越大,梁配筋越多,而框架柱的配筋主要受地震控制,中低设防烈度的框架柱配筋多数是构造配筋或配筋较少。

与欧洲规范EN1998第十一章中6.3.2条要求抗震柱的轴压比不大于0.65对比[2],我国抗震规范规定的柱轴压比限值偏高[3] [4],许多设计往往紧扣轴压比限值,导致框架柱截面偏小。

再加上楼板一般与框架梁现浇,两者共同工作能力强,显著提高框架梁的抗弯刚度和抗弯承载力。

产生未实现强柱弱梁屈服机制的原因:a.填充墙等非结构构件影响;b.楼板对框架梁的承载力和刚度增大影响;c.框架梁跨度和荷载过大,使梁截面尺寸增大,梁端抗弯承载力增大;d.梁端超配筋和钢筋实际强度超强;e.柱轴压比限值规定偏高,柱截面尺寸偏小;f.柱最小配筋率和最小配箍率偏小;g.大震下结构受力状态与结构弹性受力状态存在差异;h.梁柱可靠度的差异。

(2)刚度突变造成。

产生刚度突变的因素之一是填充墙。

在框架结构设计中,填充墙和隔墙只作为荷载参与结构计算,并且以周期折减系数的设定调整结构的总体刚度。

实际上不同材质填充墙或多或少具有一定的刚度和强度,布置密集时会产生较大的楼层刚度和强度,而未设置填充墙的楼层层刚度则相对变小,形成柔弱层。

震区中很多这样的低层框架,由于底层为商铺或停车场,填充墙很少;而上部为旅馆或住宅,有较密集的填充墙,这样就形成了上刚下柔的结构,使底层成为柔弱层,导致底层发生层屈服机制。

2.2框架结构节点的破坏柱剪切破坏,梁柱节点区破坏,大多属于配箍不足,箍筋拉结或弯钩等构造措施不足等原因造成,与欧洲规范EN1998对比[2],我国规范规定的最小配箍率可能也需要提高[3] [4]。

值得注意的是,在柱的强剪弱弯方面,即使柱端首先发生弯曲破坏而形成塑性铰,巨大的轴压容易使混凝土压溃而发生剥离脱落(本次地震竖向振动很大),从而严重削弱柱端的抗剪能力,而柱端出现塑性铰并不会减小其所受到的地震剪力,因而容易引起剪切破坏。

因此,需考虑压弯破坏对柱端抗剪承载力降低的影响充分保证“强剪弱弯”。

2.3框架结构底层柱顶的破坏框架底层柱顶破坏与薄弱层破坏有类似原因,最大不同在于柱根。

当底层柱基础及地梁有一定埋深、地面有回填土和建筑面层时,柱根部就不易发生弯曲破坏,框架柱只出现底层柱顶端破坏。

但由于填充墙有一定的刚度和强度,地震时对柱顶端产生偏心支撑的作用,可能引起框架柱或节点的剪切破坏。

按照规范要求,填充墙与框架应采用柔性连接,但由于设计困难,施工难处理,多数工程没有这样做。

2.4框架结构的楼梯破坏框架结构在楼梯设计时只考虑静荷载和活荷载的作用,目前使用较多的板式楼梯通常只在梯板下配置受弯钢筋。

但是,楼梯在地震中会起一定的支撑作用,承受地震产生的拉力和压力,当地震较大、楼梯板配筋不足时,就会出现受拉屈服或拉断,受压时出现压弯破坏。

楼梯梁也会因楼梯的支撑作用而承担更多的地震作用,产生相应的破坏。

3填充墙框架结构抗震性能3.1汶川地震中填充墙框架结构的破坏情况目前设计采用的结构分析方法对于填充墙所作的贡献通常用刚度增大系数体现,与地震发生时结构所表现出的抗震性能有一定差异。

地震作用下,填充墙与框架共同工作,一方面墙体受到框架的约束,另一方面框架受到填充墙所提供的支撑作用。

由于填充墙早期的刚度大,吸收了较大的地震作用,而其强度相对较低,所以填充墙的震害重于框架梁柱。

填充墙的震害大部分是墙面产生单斜裂缝或者是交叉裂缝;在填充墙和框架梁界面上出现水平裂缝的情况也较为普遍;当填充墙与框架梁柱缺少连接或连接很弱时,填充墙可能发生平面外倒塌。

由于框架变形属于剪切型,下部的层间位移大,填充墙的震害规律一般是上轻下重,空心砌体墙重于实心砌体墙[5]。

(1)填充墙沿竖向布置不均形成软弱层。

底层作商业用途或停车场、上部作为住宅的框架结构建筑物的底层遭受了不同程度的破坏。

在这些框架结构中广泛的采用页岩空心砖和加气混凝土砌块作为填充墙,上部因用于住宅而使用了较多的填充墙来分隔空间,底层为了追求商业空间和停车空间,填充墙或其他抗侧力构件布置很少。

底层几乎无填充墙,底层抗侧刚度很低。

汶川地震使该栋建筑在纵向方向发生了30 cm左右的水平侧移,侧移主要集中在底层,其他层基本完好,底层形成软弱层。

(2)填充墙和框架结构的相互作用所造成的柱破坏。

造成框架柱破坏的原因有很多,如地震作用下表现出来的弱柱强梁,由于建筑功能要求而在结构布置时形成的短柱,由于窗下填充墙形成的短柱等。

由于短柱的刚度大于框架结构中的其他非短柱,地震作用下短柱会吸收更多的地震作用,而相比于同层其他非短柱,短柱的耗能能力相对较低,因此在地震作用下先发生破坏。

加之短柱的破坏具有明显的脆性性质,短柱破坏有明显的压、弯、剪破坏特征。

框架在水平地震作用下发生侧向变形时,填充墙将对一侧框架柱产生斜向的压力,即类似于斜压杆的作用,因而会加大斜裂缝和梁底之间一段柱所承受的地震剪力,从而导致剪切破坏形态。

而且填充墙也会将一部分剪力传递给柱。

这样就增加了柱破坏的可能性[6] [7]。

(3)填充墙和框架结构的相互作用所造成的梁的破坏。

框架梁的破坏主要是由于填充墙对框架梁底部产生向上的压力从而使框架梁发生弯剪破坏。

3.2填充墙对框架结构抗震性能的影响(1)与框架梁共同受力,显著减小框架梁弯曲变形,增大框架梁的刚度和抗弯承载力。

(2)直接参与整体结构的抗震受力,增加结构层刚度,造成结构层刚度不均匀,使未设置填充墙的楼层形成薄弱层(通常是底层),导致形成层屈服机制,无法实现“强柱弱梁”屈服机制;或造成平面刚度分布不规则,引起扭转效应。

(3)结构总体刚度增大,基本周期减小约40%至60%,地震力增大。

(4)影响框架结构的内力分布,如约束框架柱部分柱段的侧移变形,形成短柱,使得局部抗侧刚度过大,地震剪力增大,进而导致短柱剪切破坏,影响整体结构的破坏模式。

3.3填充墙框架结构破坏过程分析采用离散单元建立单片墙模型,运用ANSYS有限元软件进行非线性有限元分析,根据文献[8]所选取的单元和材料参数,采用标准尺寸为240 115 53mm的实心粘土砖,材料参数如表2所示,以一顺一丁砌式建立1250 240 882mm的单片墙,离散单元采用单元类型是ANSYS中的SOLID65模拟砖块和砂浆,以MKIN-CONCRETE准则作为砌体的破坏准则。

表2 砖块和砂浆的材料参数弹性模量(Pa)泊松比密度(kg/ )单轴抗压强度(Pa)单轴抗拉强度(Pa)砖块11E+9 0.15 1837 10E+6 0.813E+6砂浆 2.2E+9 0.15 1837 5 E+6 0.333E+6对单片墙在竖向压力和水平力作用下的力学特性进行分析,模型四周加以约束以模拟框架作用,左侧增设水平加载钢板。

加载时第一荷载步设定一次性将竖向荷载以均布荷载的形式加载在弹性梁顶部,再进行水平加载,水平荷载分为多个荷载步,每荷载步增加100kN,并以均布形式施加于水平加载钢板侧面,剪压破坏时,单片墙开裂图如图1所示。

图1 离散单元单片墙剪压破坏开裂图图2是湖南大学进行混凝土小型空心砌块墙体剪压破坏时的有限元开裂图以及实际试验开裂图[9],与图1相比,开裂缝走向相似,但图2的空心砌块压碎状况更严重,这是因为进行混凝土小型空心砌块墙体的极限承载力模拟计算时,由于设置了墙内钢筋,承载能力增强,钢筋屈服时空心砌块压碎程度明显比本文砖砌体大。

图2混凝土小型空心砌块墙体剪压破坏开裂图根据有限元分析过程,得出填充墙的破坏过程如下:(1)弹性阶段,填充墙和框架均处于弹性状态两者共同作用,填充墙与框架周边相接触的地方产生界面裂缝。

相关主题