标准CRC生成多项式如下表:名称生成多项式简记式* 标准引用CRC-4 x4+x+1 3 ITU G.704CRC-8 x8+x5+x4+1 0x31CRC-8 x8+x2+x1+1 0x07CRC-8 x8+x6+x4+x3+x2+x1 0x5ECRC-12 x12+x11+x3+x+1 80FCRC-16 x16+x15+x2+1 8005 IBM SDLCCRC16-CCITT x16+x12+x5+1 1021 ISO HDLC, ITU X.25, V.34/V.41/V.42,PPP-FCSCRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCSCRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP生成多项式的最高位固定的1,故在简记式中忽略最高位1了,如0x1021实际是0x11021。
I、基本算法(人工笔算):以CRC16-CCITT为例进行说明,CRC校验码为16位,生成多项式17位。
假如数据流为4字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0];数据流左移16位,相当于扩大256×256倍,再除以生成多项式0x11021,做不借位的除法运算(相当于按位异或),所得的余数就是CRC校验码。
发送时的数据流为6字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0]、CRC[1]、CRC[0];II、计算机算法1(比特型算法):1)将扩大后的数据流(6字节)高16位(BYTE[3]、BYTE[2])放入一个长度为16的寄存器;2)如果寄存器的首位为1,将寄存器左移1位(寄存器的最低位从下一个字节获得),再与生成多项式的简记式异或;否则仅将寄存器左移1位(寄存器的最低位从下一个字节获得);3)重复第2步,直到数据流(6字节)全部移入寄存器;4)寄存器中的值则为CRC校验码CRC[1]、CRC[0]。
III、计算机算法2(字节型算法):256^n表示256的n次方把按字节排列的数据流表示成数学多项式,设数据流为BYTE[n]BYTE[n-1]BYTE[n-2]、、、BYTE[1]BYTE[0],表示成数学表达式为BYTE[n]×256^n+BYTE[n-1]×256^(n-1)+...+BYTE[1]*256+BYTE[0],在这里+表示为异或运算。
设生成多项式为G17(17bit),CRC码为CRC16。
则,CRC16=(BYTE[n]×256^n+BYTE[n-1]×256^(n-1)+...+BYTE[1]×256+BYTE[0])×256^2/G17,即数据流左移16位,再除以生成多项式G17。
先变换BYTE[n-1]、BYTE[n-1]扩大后的形式,CRC16=BYTE[n]×256^n×256^2/G17+BYTE[n-1]×256^(n-1)×256^2/G17+...+BYTE[1]×256×256^2/G17 +BYTE[0]×256^2/G17=(Z[n]+Y[n]/G17)×256^n+BYTE[n-1]×256^(n-1)×256^2/G17+...+BYTE[1]×256×256^2/G17+BY TE[0]×256^2/G17=Z[n]×256^n+{Y[n]×256/G17+BYTE[n-1]×256^2/G17}×256^(n-1)+...+BYTE[1]×256×256^2/G1 7+BYTE[0]×256^2/G17=Z[n]×256^n+{(YH8[n]×256+YHL[n])×256/G17+BYTE[n-1]×256^2/G17}×256^(n-1)+...+BYTE [1]×256×256^2/G17+BYTE[0]×256^2/G17=Z[n]×256^n+{YHL[n]×256/G17+(YH8[n]+BYTE[n-1])×256^2/G17}×256^(n-1)+...+BYTE[1]×2 56×256^2/G17+BYTE[0]×256^2/G17这样就推导出,BYTE[n-1]字节的CRC校验码为{YHL[n]×256/G17+(YH8[n]+BYTE[n-1])×256^2/G17},即上一字节CRC校验码Y[n]的高8位(YH8[n])与本字节BYTE[n-1]异或,该结果单独计算CRC校验码(即单字节的16位CRC校验码,对单字节可建立表格,预先生成对应的16位CRC校验码),所得的CRC校验码与上一字节CRC校验码Y[n]的低8位(YL8[n])乘以256(即左移8位)异或。
然后依次逐个字节求出CRC,直到BYTE[0]。
字节型算法的一般描述为:本字节的CRC码,等于上一字节CRC码的低8位左移8位,与上一字节CRC右移8位同本字节异或后所得的CRC码异或。
字节型算法如下:1)CRC寄存器组初始化为全"0"(0x0000)。
(注意:CRC寄存器组初始化全为1时,最后CRC应取反。
)2)CRC寄存器组向左移8位,并保存到CRC寄存器组。
3)原CRC寄存器组高8位(右移8位)与数据字节进行异或运算,得出一个指向值表的索引。
4)索引所指的表值与CRC寄存器组做异或运算。
5)数据指针加1,如果数据没有全部处理完,则重复步骤2)。
6)得出CRC。
unsigned short GetCrc_16(unsigned char * pData, int nLength)//函数功能:计算数据流* pData的16位CRC校验码,数据流长度为nLength{unsigned short cRc_16 = 0x0000; // 初始化while(nLength>0){cRc_16 = (cRc_16 << 8) ^ cRctable_16[((cRc_16>>8) ^ *pData) & 0xff]; //cRctable_16表由函数mK_cRctable生成nLength--;pData++;}return cRc_16;}void mK_cRctable(unsigned short gEnpoly)//函数功能:生成0-255对应的16CRC校验码,其实就是计算机算法1(比特型算法)//gEnpoly为生成多项式//注意,低位先传送时,生成多项式应反转(低位与高位互换)。
如CRC16-CCITT为0x1021,反转后为0x8408{unsigned short cRc_16=0;unsigned short i,j,k;for(i=0,k=0;i<256;i++,k++){cRc_16 = i<<8;for(j=8;j>0;j--){if(cRc_16&0x8000) //反转时cRc_16&0x0001cRc_16=(cRc_16<<=1)^gEnpoly; //反转时cRc_16=(cRc_16>>=1)^gEnpolyelsecRc_16<<=1; //反转时cRc_16>>=1}cRctable_16[k] = cRc_16;}}这几天研究了一下CRC算法,碰到了一些问题,研究了一下,小有心得。
CRC算法是在通讯领域广泛采用的校验算法。
原理我就不说了,这里说一下简单的程序实现。
以下均采用CRC多项式为0x1021即:g(x) = x16+x12+x5+x0;CRC的基本原理就不说了,那个搜一下就有了。
最基本的算法应该是按位计算了,这个方法可以适用于所有长度的数据校验,最为灵活,但由于是按位计算,其效率并不是最优,只适用于对速度不敏感的场合。
基本的算法如下:unsigned short do_crc_16(unsigned char *message, unsigned int len) {int i, j;unsigned short crc_reg = 0;unsigned short current;for (i = 0; i < len; i++){current = message[i] << 8;for (j = 0; j < 8; j++){if ((short)(crc_reg ^ current) < 0)crc_reg = (crc_reg << 1) ^ 0x1021;elsecrc_reg <<= 1;current <<= 1;}}return crc_reg;}以是方法可以计算出任意长度数据的校验。
但速度慢。
下面介绍一种按字节计算的方法:按字节校验是每次计算8位数据,多是基于查表的算法,首先要准备一个表,一共256项。
unsigned int crc_ta[256]={ /* CRC余式表 */ 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0 };unsigned short do_crc_table(unsigned char *ptr,int len){unsigned short int crc;unsigned char da;crc=0;while(len--!=0){da=(unsigned short)crc>>8; /* 以8位二进制数的形式暂存CRC的高8位 */crc<<=8; /* 左移8位,相当于CRC的低8位乘以 */crc^=crc_ta[da^*ptr]; /* 高8位和当前字节相加后再查表求CRC ,再加上以前的CRC */ptr++;}return(crc);}以上算法实现了按字节进行计算校验值。