当前位置:文档之家› 无机材料物理性能课后习题答案

无机材料物理性能课后习题答案

《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

解:令E 1=380GPa,E 2=84GPa,V 1=,V 2=。

则有当该陶瓷含有5%的气孔时,将P=代入经验计算公式E=E 0+可得,其上、下限弹性模量分别变为 GPa 和 GPa 。

1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。

0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量解:1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。

解:Maxwell 模型可以较好地模拟应力松弛过程:Voigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。

如采用四元件模型来表示线性高聚物的蠕变过程等。

第二章 脆性断裂和强度2-1 求融熔石英的结合强度,设估计的表面能力为m 2; Si-O 的平衡原子间距为*10-8cm;弹性模量从60到75Gpa).1()()(0)0()1)(()1()(10//0----==∞=-∞=-=e EEe e Et t t στεσεεεσεττ;;则有:其蠕变曲线方程为:./)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0123450.00.20.40.60.81.0σ(t )/σ(0)t/τ应力松弛曲线123450.00.20.40.60.81.0ε(t )/ε(∞)t/τ应变蠕变曲线)(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82332min 2MPa Pa N F F f =⨯=︒︒⨯⨯=⨯=︒⨯︒⨯=⇒︒⨯︒=πσπτπτ:此拉力下的法向应力为为:系统的剪切强度可表示由题意得图示方向滑移a E th γσ==GPa 64.28~62.2510*6.175.1*10*)75~60(109=-2-2 融熔石英玻璃的性能参数为:E=73 Gpa ;γ= J/m 2;理论强度σth=28 Gpa 。

如材料中存在最大长度为2μm 的内裂,且此内裂垂直于作用力方向,计算由此导致的强度折减系数。

2c=2μm c=1*10-6mc E c πγσ2==GPa 269.010*1*14.356.1*10*73*269=- 强度折减系数=28=2-5 一钢板受有长向拉应力350MPa ,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。

此钢材的屈服强度为1400 MPa ,计算塑性区尺寸r 0及其裂缝半长c 的比值。

讨论用此试件来求K IC 值的可能性。

c Y K σ=I =c .σπ=mm K r ys125.0)(2120==I σπ =>==π151031.04/125.0/0c r > 用此试件来求K IC 值的不可能。

2-6 一陶瓷零件上有一垂直于拉应力的边裂,如边裂长度为:(1)2mm;(2)0.049mm;(3)2 um, 分别求上述三种情况下的临界应力。

设此材料的断裂韧性为。

讨论讲结果。

解:c Y K I σ= Y=π=cK I 98.1=σ=2/1818.0-c(1)c=2mm, MPa c 25.1810*2/818.03==-σ(2)c=0.049mm, MPa c 58.11610*049.0/818.03==-σ (3)(3)c=2um, MPa c 04.57710*2/818.06==-σ2-4 一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图。

如果E=380 Gpa ,μ=,求K Ic 值,设极限荷载达50Kg 。

计算此材料的断裂表面能。

解 c/W=, Pc=50* ,B=10, W=10,S=40 代入下式:])/(7.38)/(6.37)/(8.21)/(6.4)/(9.2[2/92/72/52/32/12/3W c W c W c W c W c BWSP K c IC +-+-==]1.0*7.381.0*6.371.0*8.211.0*6.41.0*9.2[010.0*1040*8.9*502/92/72/52/32/12/3+-+-=62*() =*==2212μγ-=E K IC 28.3)10*380*2/(94.0*)10*63.1(2)1(92622==-=EK IC μγ J/m 2第三章 材料的热学性能2-3 一热机部件由反应烧结氮化硅制成,其热导率λ=.℃),最大厚度=120mm.如果表面热传递系数h= J/.℃),假定形状因子S=1,估算可兹应用的热冲击最大允许温差。

解:hr S R T m m 31.01⨯'=∆=226*05.0*6*31.01==447℃2-1 计算室温(298K )及高温(1273K )时莫来石瓷的摩尔热容值,并请和按杜龙-伯蒂规律计算的结果比较。

(1) 当T=298K ,Cp=a+bT+cT -2=+*10-3**105/2982=+ *(2) 当T=1273K ,Cp=a+bT+cT -2=+*10-3**105/12732=+ J/据杜隆-珀替定律: Cp=21*24。

94= J/2-2 康宁1723玻璃(硅酸铝玻璃)具有下列性能参数:λ=.℃); α=*10-6/℃;σp=7.0Kg/=6700Kg/mm 2,μ=.求第一及第二热冲击断裂抵抗因子。

第一冲击断裂抵抗因子:ER f αμσ)1(-==66610*8.9*6700*10*6.475.0*10*8.9*7-=170℃第二冲击断裂抵抗因子:E R f αμλσ)1(-='=170*= J/第四章 材料的光学性能3-1.一入射光以较小的入射角i 和折射角r 通过一透明明玻璃板,若玻璃对光的衰减可忽略不计,试证明明透过后的光强为(1-m)2解:rin sin sin 21=W = W’ + W’’ m WW W W m n n W W -=-=∴=⎪⎪⎭⎫⎝⎛+-=1'1"11'22121 其折射光又从玻璃与空气的另一界面射入空气则()21'"1"'"m WW m W W -=∴-= 3-2 光通过一块厚度为1mm 的透明Al 2O 3板后强度降低了15%,试计算其吸收和散射系数的总和。

解:11.0)()(0)(0625.185.0ln 1085.0-⨯+-+-+-=-=+∴=∴=∴=cm s e e I Ie I I s x s x s αααα定律所得的计算值。

趋近按,可见,随着温度的升高Petit Dulong C m P -,第五章 材料的电导性能4-1 实验测出离子型电导体的电导率与温度的相关数据,经数学回归分析得出关系式为:TBA 1lg +=σ (1)试求在测量温度范围内的电导活化能表达式。

(2)若给定T1=500K ,σ1=10-9(1).-ΩcmT2=1000K ,σ2=10-6(1).-Ωcm计算电导活化能的值。

解:(1))/(10T B A +=σ 10ln )/(ln T B A +=σ10ln )/(T B A e +=σ=)/.10(ln 10ln T B A e e =)/(1kT W e A - W=k B ..10ln - 式中k=)/(10*84.04K eV -(2) 500/10lg 9B A +=- 1000/10lg 6B A +=- B=-3000W=-ln10.(-3)**10-4*500=*10-4*500=4-3本征半导体中,从价带激发至导带的电子和价带产生的空穴参与电导。

激发的电子数n 可近似表示为:)2/ex p(kT E N n g -=,式中N 为状态密度,k 为波尔兹曼常数,T 为绝对温度。

试回答以下问题:(1)设N=1023cm -3,k=8.6”*时, Si(Eg=,TiO 2(Eg=在室温(20℃)和500℃时所激发的电子数(cm -3)各是多少:(2)半导体的电导率σ(Ω)可表示为μσne =,式中n 为载流子浓度(cm -3),e 为载流子电荷(电荷*10-19C ),μ为迁移率()当电子(e )和空穴(h )同时为载流子时,h h e e e n e n μμσ+=。

假定Si 的迁移率μe=1450(),μh=500(),且不随温度变化。

求Si 在室温(20℃)和500℃时的电导率解:(1) Si20℃ )298*10*6.8*2/(1.1ex p(10523--=n =1023*=*1013cm -3 500℃ )773*10*6.8*2/(1.1ex p(10523--=n =1023*e -8=*1019 cm -3 TiO 220℃ )298*10*6.8*2/(0.3ex p(10523--=n=*10-3 cm -3500℃ )773*10*6.8*2/(0.3ex p(10523--=n=*1013 cm -3 (2) 20 ℃h h e e e n e n μμσ+= =*1013**10-19(1450+500) =*10-2(Ω) 500℃ h h e e e n e n μμσ+= =*1019**10-19(1450+500) =7956 (Ω) 4-2. 根据缺陷化学原理推导(1)ZnO 电导率与氧分压的关系。

相关主题