表观遗传学绪论
在“基因决定论”的背后,隐藏着一个重要的、长期以 来争执不休的问题: 环境的作用能否改变个体的遗传特性, 并传递给下一代? 这种被称为“拉马说”(Lamarckism) 的观点一直被正统的生物学家拒之门外。但现实的生命世界 又一次次地把这个话题送到研究者的视线内。
瑞典一个科学家小组曾在2002年11月发表了一项研究, 他们的统计结果表明, 对于生于1890- 1920年的瑞典男 人的孙辈而言,如果其祖父在青少年期间吃得很好, 那么 孙辈因糖尿病而死亡的概率就很高;如果其祖父是在饥饿中 长大的.那么孙辈死于心脏病的机会就很少。也就是说,祖 父辈的饮食状态影响到了孙辈的健康状态。
研究,科学家发现,除了基因组DNA外, 还有基因组之外的大量遗传学信息调控
着基因的表达,表观遗传学(epigenetics) 应运而生。
表观遗传学
1. 表观遗传:基因的DNA序列不发生改变的情况下,基 因的表达 水平与功能发生改变,并产生可遗传的表型。
2. 表观遗传学:研究不涉及DNA序列改变的基因表达和调控的可遗 传变化的,或者说是研究从基因演绎为表型的过程和机制的一门 新兴的遗传学分支。
white 基因vs. 转座子
PEV: 位置效应斑
Paramutation
•
副突变是指一个等位基因可以使其同源基因的转录产生稳定可遗传
变化的途径。
•
副突变(Paramutation)首次于上个世纪50年代在玉米中被发现,
后在其他植物和真菌中被发现,它是一种不符合法则的遗传形式。大多
数情况下,孟德尔的遗传定律(该定律认为基因对中的等位基因独立遗
从这个例子可以得到这样一种结论:个体在发育和生 长过程中获得的环境影响。被遗传给了后代。从这里可以 引申出一个更根本的问题:什么决定基因。大自然(环境) 如此丰富多彩、如此变化不停,很难想象,对于一个开放 的复杂生命系统,不会打上它的烙印。也许这是一个“先 有鸡还是先有蛋”的进化论问题,但不论怎样,基因不会 代表一切,更不能决定一切。
传)都是对等的。但副突变是具有同一位点的两个等位基因之间的相互
作用,它导致其中一个等位基因发生一个可遗传的变化。
Paramutation
1. 分子机理一(Pairing model):染色体发生交联, 使得等位基因受到影响;
Paramutation
2. 分子机理二(RNA-mediated trans-induction of chromatin):RNA参与调控
蛋白质的序列来揭示功能的保守性,并 发现新的规律。
DNA双螺旋
基因的结构
基因:可遗传
1. 遗传的基本功能单位 2. 基因由DNA编码 3. 一个基因编码一条蛋白质 4. 基因序列的改变可能导致功能及表型的
改变 基因型(Genotype) -> 表型(Phenotype)
人类基因组计划
1. 搞清楚人类基因组的DNA碱基的内容和顺序 2. 编码区(编码蛋白的DNA序列):占基因组的 <2% 3. 非编码区:功能? a. 非编码RNA:具有调控功能 b. 重复片段:维持基因组的结构? c. 转座子
(Transposon) 4. 染色质重塑(Chromatin remodeling) 5. 伪基因(Pseudogene)
DNA甲基化
基因印记
• 概念:
或称亲本印迹(parent imprinting)
是指基因组在传递遗传信息的过程中,通过基因组 的化学修饰(DNA的甲基化;组蛋白的甲基化、 乙酰化、磷酸化、泛素化等)而使基因或DNA片 段被标识的过程。
雌性的一条X染色体完全失去活性
DNA甲基化
SAH, S-adenosylhomocysteine; SAM, S-denosylmethionine
S-腺苷酰-L-甲硫氨酸
S-腺苷-L-高半胱氨酸
三、表观遗传概学的研述究内容:
基因选择性转录表达 的调控
DNA甲基化 基因印记 组蛋白共价修饰 染色质重塑
Rudolf Jaenisch
1. Dnmt1chip/-: Dnmt1的表达量为正常小 鼠的10%;
2. 低甲基化 3. Dnmt1chip/-小鼠出生体重为正常的70% 4. 80%的小鼠4-8个月内产生淋巴瘤 5. 癌基因c-myc表达量异常增高
表观治疗
1. DNA甲基化抑制剂 (1) CpG岛的异常甲基化:癌症发生早期 (2) 小分子抑制剂:特异性不高 (3) 研究前景:选择性抑制甲基化,激活保护性基因 2. 组蛋白去乙酰化酶抑制剂 (1) 组蛋白的乙酰化酶(HATs):增强转录因子活性 (2) (2) 组蛋白的去乙酰化酶(HDACs):减弱转录因子活
基蛋因白转质录的后 翻的 译调 后控 修饰
基组因蛋组白中的非甲编基码化、RN乙A 酰微化小RNA
(组m蛋iR白N的A)其他修饰 反义RNA 内非含组子蛋、白核的糖共开价关修等饰
пятница, 27
26
(一)基因选择性转录表达的调控
1. DNA甲基化(DNA Methylation) 2. 基因印记(Genomic Imprinting) 3. DNA甲基化与转座子的稳定性
基因印迹使基因的表达受到抑制,导致被 印迹的基因的生物功能的丧失。
пятница, 27
31
染色质重塑
染色质(Chromatin): 染色体上高度致密 的部分,通常不表达基因
(二)基因转录后的调控
1. 非编码RNA 2. MicroRNA 3. Antisense RNA 4. Riboswitch RNAs
Antisence
Riboswitch RNAs
主要定位于基因的5’非转录端附近,能 够感知代谢物并调控基因表达
3. 蛋白质的翻译后修饰
1. 组蛋白的甲基化和乙酰化——Static 2. 组蛋白的其他修饰——Dynamic 3. 非组蛋白的共价修饰
组蛋白共价修饰
四、表观遗传学与遗传学
1. 表观遗传学是经典遗传学的补充和进一步的发展; 2. 拉马克的进化学说: (1) 用进废退 (2) 获得性遗传 3. 表观遗传学仅见于真核生物中 4. 遗传模式: (1) 稳定模式 (2)(2) 结构遗传模式 (3)(3) 染色质标记模式
• 1996年G.D.Penny等发现X染色体的Xq13.3区段有一个 X失活中心( X-inaction center,Xic),X-失活从Xic区 段开始启动,然后扩展到整条染色体。
пятница, 27
22
пятница, 27
X
染 色 体 失 活 过 程 模 式 图
23
X-chromosome inactivation
• 特点:
基因组印迹依靠单亲传递某种性状的遗传信息,被 印迹的基因会随着其来自父源或母源而表现不同, 即源自双亲的两个等位基因中一个不表达或表达很 弱。
不遵循孟德尔定律,是一种典型的非孟德尔遗传, 正反交结果不同。
пятница, 27
29
正
Igf-2 Igf-2 正常小鼠
遗传印迹
交
反
♀ Igf-2m
X染色体失活
• 1961年M.F.Lyon就提出了关于雌性哺乳动物体细胞的 两条X染色体中会有一条发生随机失活的假说,并认 为这是一种基因剂量补偿的机制。以后的研究表明在 给定的体细胞有丝分裂谱系中,有一条X染色体是完 全失活并呈异染色质状态,而在另一个细胞谱系中同 一条X染色体又可以是活化的且呈常染色质状态。
性 (3) 抑制去乙酰化:增强转录保护性基因 (4) 对特异性要求不高
六、国际人类表观基因组计划
1. The Human Genome Project: provides the blueprint for life, but the epigenome will tell us how this whole thing gets executed. 2. Human epigenome project: DNA methylation (1) 不同组织、细胞 (2) 不同发育阶段 (3) 正小鼠
♂Igf-2m Igf-2m 矮小型小鼠
交
Igf-2 Igf-2 正常小鼠
Igf-2 Igf-2m 正常小鼠
пятница, 27
Igf-2m Igf-2 矮小型小鼠
30
遗传印迹
• 由正反交实验可以看出:
印迹基因的正反交结果不一致、不符合孟 德尔定律。
小鼠 Igf-2 基因总是母本来源的等位基因 被印迹,父本来源的等位基因表达,因此 是母本印迹。
• 克隆动物未老先衰 • 同卵双生的双胞胎虽
然具有相同的DNA序 列,却存在表型的差 异和疾病易感性的差 异
• 组织特异性基因的表 达
• 复杂疾病的发生
• 单单从DNA序列上寻找众多疾病的病因 是片面的,往往事倍功半,对于某些疾 病甚至可能永远找不到答案。
• 随着对实验动物特别是克隆动物生物学 性状的了解以及人们对众多疾病的深入
3. 特征: (1)可遗传;(2) 可逆性;(3) DNA不变
4. 表观遗传学的现象: (1) DNA甲基化 (2) 组蛋白修饰 (3) MicroRNA (4) Genomic imprinting
…
遗传信息
1. 遗传编码信息:提供生命必需蛋白质的 模板
2. 表观遗传学信息:何时、何地、以何种 方式去应用遗传信息
(1) DNA的甲基化:CpG位点,>5,000万 个
(2) 组蛋白修饰:组蛋白密码(Histone code)
二、表观遗传学的发展历史
1. 1942年,Conrad Hal Waddington提出现代 Epigenetics的概念,认为基因型通过一些“偶然 的、不确定的机制”决定了不同的表型 2. 1941年,Hermann J. Muller发现Position