植物表型组学研究技术(一) ——FluorCam叶绿素荧光成像技术FluorCam叶绿素荧光成像技术Rousseau等(High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis.Plant Methods, 2013, 9:17),利用FluorCam开放式叶绿素荧光成像系统作为高通量表型分析平台,采用图像阈值分割等分析方法,对植物病原体感染进行了定量分析检测,根据Fv/Fm将感染分为不同阶段/等级,特别是可以将用其它方法难以分辨出来的感染前期加以分辨,并对5个品种的菜豆对普通细菌性疫病的抗性进行了定量分析评价。
PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM叶绿素荧光技术(Pulse Amplitude Modulated technique——脉冲调制技术)与CCD技术结合在一起,于1996年在世界上成功研制生产出FluorCam叶绿素荧光成像系统(Heck等,1999;Nedbal等,2000;Govindjee and Nedbal, 2000)。
FluorCam叶绿素荧光成像技术成为上世纪90年代叶绿素荧光技术的重要突破,使科学家对光合作用与叶绿素荧光的研究一下子进入二维世界和显微世界,广泛应用于植物生理生态、植物胁迫与抗性监测、作物育种、植物表型分析等。
不同于其它成像分析技术,FluorCam叶绿素荧光成像只对叶绿素荧光波段敏感,可以有效避免环境光的干扰,特异性、高灵敏度反映植物生理生态状况。
主要功能特点如下:1)高灵敏度CCD,时间分辨率可达50帧/秒,有效抓取叶绿素荧光瞬变;可选配高分辨率CCD,分辨率1392x1040像素,用于气孔功能成像分析、稳态荧光如GFP荧光测量等2)具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑:a)Fv/Fm:测量参数包括Fo,Fm,Fv,QY等b)Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd等荧光参数c)荧光淬灭分析:Fo,,Fm,Fp,Fs,Fv,QY,ΦIINPQ,Qp,Rfd,qL等50多个参数d)光响应曲线LC:Fo,Fm,QY,QY_Ln等荧光参数e)PAR吸收f)GFP等静态荧光测量g)OJIP与JIP-test(FKM与封闭式荧光成像系统):Fo,Fj,Fi,P 或Fm,Mo(OJIP曲线初始斜率)、OJIP固定面积、Sm(对关闭所有光反应中心所需能量的量度)、QY、PI等26个参数3)自动重复实验功能,可无人值守自动循环完成选定的实验程序,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机4)FluorCam成像分析软件:具在线功能(Live)、实验程序选配功能(Protocols)、成像预处理功能(Pre-processing)及成像分析结果展示报告功能(Result)四大功能模块a)在线功能(live):可对仪器和样品进行在线测试调试、快照、显示实验进度、在线显示荧光瞬变动态视频等b)实验程序选配功能(protocols):可选配不同的实验程序,并可对实验程序进行编辑、设置、储存(以备以后使用同样的实验程序)等c)成像预处理功能:可浏览整个测量视频及任何点、任何区域的荧光动态变化曲线,可进行“选区操作”或“分级操作”(图像阈值分割功能);选区操作可对成像进行自动或手动选区(ROI),还可使用“模具”包括多孔板模具、培养皿模具、桌面模具进行模具选区;分级操作具备荧光强度刻度标尺和四个“游标”,通过移动4个游标可以将成像按不同强度划分成不同的荧光范围组进行分析处理,可设置不同的阈值进行图像阈值分割d)结果展示报告功能:可展示所有选区(ROI)的叶绿素荧光参数值及其图像、每个参数的频率直方图及每个ROI的荧光动态图等,可对原数据(kinetic)、叶绿素荧光参数等导出到excel表,还可对每个参数成像图存储成位图5)数据分析具备“信号计算再平均”模式(算数平均值)和“信号平均再计算模式”两种功能模式,在高信噪比的情况下选用“信号计算再平均”模式,在低信噪比的情况下选择“信号平均再计算”模式以过滤掉噪音带来的误差FluorCam叶绿素荧光参数:参数符号概念描述Size 面积(像素值),经校准可测量实际面积Fo 暗适应后的最小荧光Fo_Dn 暗松弛最小荧光,红外光诱导PSIFo_Ln 光适应后的最小荧光,红外光诱导PSIFo_Lss 光适应后稳态最小荧光,红外光诱导PSIFm 暗适应后最大荧光Fm_Dn 暗松弛最大荧光Fm_Ln 光适应最大荧光Fm_Lss 光适应稳态最大荧光Fp Kautsky诱导效应最大荧光Ft_Dn 暗松弛即时荧光Ft_Ln 光适应即时荧光Ft_Lss 光适应稳态荧光Fv Fm-FoNPQ_Dn 暗松弛非光化荧光淬灭,=(Fm-Fm_Dn)/Fm_DnNPQ_Ln 光适应非光化荧光淬灭,=(Fm-Fm_Ln)/Fm_LnNPQ_Lss 稳态非光化荧光淬灭,=(Fm-Fm_Lss)/Fm_LssqP_Dn 暗松弛光化学荧光淬灭,=(Fm_Dn−Ft_Dn)/Fm_Dn−Fo_DnqP_Ln 光适应光化学淬灭,=(Fm_Ln−Ft_Ln)/(Fm_Ln−Fo_Ln)qP_Lss 稳态光适应光化学淬灭,=(Fm_Lss−Ft_Lss)/(Fm_Lss−Fo_Lss)qL_Ln 基于“Lake”模型的光适应光化学淬灭qL_Lss 基于“Lake”模型的稳态光适应光化学淬灭QY_Dn 暗松弛光量子效率,=(Fm_Dn−Ft_Dn)/Fm_DnQY_Ln或ΔF/Fm 光适应光量子效率,=(Fm_Ln−Ft_Ln)/Fm_LnQY_Lss 稳态光量子效率,=(Fm_Lss−Ft_Lss)/Fm_LssFv/Fm或QY_max 最大光量子效率Fv/Fm_Ln 光适应光量子效率,=(Fm_Ln−Fo_Lss)/Fm_LnFv/Fm_Lss 稳态光量子效率,=(Fm_Lss−Fo_Lss)/Fm_LssRfd_Ln 光适应荧光衰减率,用于评估植物活力,=(Fp−Ft_Ln)/Ft_LnRfd_Lss 稳态荧光衰减率,用于评估植物活力,=(Fp−Ft_Lss)/Ft_Lss除上述叶绿素荧光参数外,还可以成像测量PAR吸收、植物光谱反射指数NDVI等,叶片大小(或植物大小)可以反映植物的生长等。
FluorCam叶绿素荧光成像技术仪器系统:1.FluorCam便携式光合联用叶绿素荧光成像系统:可与LCProSD光合仪、Licor6400光合仪等联用2.FluorCam便携式叶绿素荧光成像系统:成像面积3.5x3.5cm,具暗适应叶夹及多功能轻便三脚架,主机重量不足2kg,高度集成、高度便携、高性价比,可用于实验室或野外测量和监测,是便携性植物表型分析的最佳选择。
可同时选配FluorPen手持式叶绿素荧光仪用于测量OJIP等3.FluorCam便携式Chl/GFP荧光成像系统:为便携式荧光成像系统的扩展版,可同时进行叶绿素荧光成像分析和GFP绿色荧光蛋白成像分析,不仅可用于2D叶绿素荧光成像分析,还可以用于作物育种转基因绿色荧光蛋白标记检测等4.FluorCam封闭式叶绿素荧光成像系统:LED光源、CCD荧光监测镜头、控制单元等集成于暗适应操作箱内形成一个完整的主机系统,是世界上唯一可进行QA再氧化动力学和OJIP测量分析的叶绿素荧光成像系统,封闭式操作箱还可用于植物光培养(光强、光质可调)成像面积13x13cm。
下图为OJIP成像分析结果5.FluorCam封闭式Chl/GFP荧光成像系统:为封闭式叶绿素荧光成像系统的扩展版,可同时进行叶绿素荧光成像分析和GFP绿色荧光蛋白成像分析,成像面积为13x13cm6.FluorCam开放式叶绿素荧光成像系统:模块式,具备高度可扩展性,可自由选配不同的激发光源及相应滤波器以对叶绿素荧光动态及稳态荧光(如GFP等)等进行成像分析,镜头高度可调,标准配置成像面积13x13cm,大型版成像面积可达20x20cm7.FKM多光谱荧光动态显微成像与光谱分析系统:多激发光、多光谱荧光成像与光谱分析,可对叶绿素荧光动态、QA再氧化、OJIP快速荧光动力学进行显微成像分析和光谱分析,还可对GFP荧光、细胞荧光染色等进行显微成像分析,是植物细胞和亚细胞水平上最强有力的表型分析平台8.Fluorcam移动式大型叶绿素荧光成像系统:大型叶绿素荧光成像平台安装在具轮子的支架上,方便移动,成像平台可上下移动以适于不同高度的植物,成像面积达35x35cm,可选配RGB真彩成像分析和GFP绿色荧光蛋白成像检测9.FluorCam样带扫瞄式叶绿素荧光成像系统:大型成像平台可在100-500cm的支架上对样带进行扫瞄成像,标配扫瞄区域长度为400cm,成像平台可沿样带精确定位自动扫瞄,可选配RGB真彩扫瞄成像,从而实现叶绿素荧光成像和真彩成像分析10.FluorCam多光谱荧光成像系统:属多激发光、多光谱荧光成像系统,不仅可对叶绿素荧光进行成像分析,还可对UV紫外光激发F440(蓝色荧光)、F520(绿色荧光)、F690(红色荧光)和F740(红外荧光)进行成像分析用于全方位研究检测植物胁迫与抗性,有标准配置、扩展配置和大型配置3种型号案例1: 北京市土壤种子库萌发23天后的叶绿素荧光成像分析。
左图为Rfd,右图为采用FluorCam图像阈值分割方法特异性选择土壤表面的藻类(彩色部分)叶绿素荧光成像(数据来源为Ecolab实验室)案例2: 芦荟干旱胁迫叶绿素荧光成像分析,其中蓝色为干旱胁迫状态,红色为浇水后24小时(数据来源为Ecolab 实验室)案例3: 菜豆对敌草隆(Diuron)吸收过程叶绿素荧光成像(图片来源:Hartmut等,Uptake of diuron and concomitant loss of photosynthetic activity in leaves as visualized by imaging the red chlorophyll fluorescence.Photosynth Res. (2013) 116:355-361)0 0.20.40.60.8 1 QY_maxFv/Fm_L1Fv/Fm_L2 Fv/Fm_L3 Fv/Fm_L4Fv/Fm_LssFv/Fm_D1 Fv/Fm_D2 Fv/Fm_D3QY_L1QY_L2QY_L3QY_L4QY_Lss QY_D1 QY_D2 QY_D3 00.1 0.20.3 0.4 NPQ_L1 NPQ_L2 NPQ_L3 NPQ_L4NPQ_Lss NPQ_D1NPQ_D2 NPQ_D3qN_L1qN_L2qN_L3qN_L4 qN_Lss qN_D1 qN_D2 qN_D3案例4: 紫露草叶绿素荧光参数成像(左)及其实验叶片部分频率直方图(中)和在正常空气中的叶尖部分频率直方图(右):A为为干燥脱水、低氧(2%)、正常CO2(350ppm),D为干燥脱水2小时、低氧、正常CO2,G为干燥脱水2小时、低氧、高浓度CO2(5%)。