晶体中缺陷和运动晶体缺陷(crystal defect)1定义:实际晶体中原子规则排列遭到破坏而偏离理想结构的区域。
在理想完整晶体中,原子按一定的次序严格地处在空间有规则的、周期性的格点上。
但在实际的晶体中,由于晶体形成条件、原子的热运动及其它条件的影响,原子的排列不可能那样完整和规则,往往存在偏离了理想晶体结构的区域。
这些与完整周期性点阵结构的偏离就是晶体中的缺陷,它破坏了晶体的对称性。
2类型晶体结构中质点排列的某种不规则性或不完善性。
又称晶格缺陷。
表现为晶体结构中局部范围内,质点的排布偏离周期性重复的空间格子规律而出现错乱的现象。
根据错乱排列的展布范围,分为以下4种主要类型。
2.1点缺陷——点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关点缺陷只涉及到大约一个原子大小范围的晶格缺陷。
它包括:晶格位置上缺失正常应有的质点而造成的空位;由于额外的质点充填晶格空隙而产生的填隙;由杂质成分的质点替代了晶格中固有成分质点的位置而引起的替位等(图1)。
在类质同象混晶中替位是一种普遍存在的晶格缺陷。
2.1.1点缺陷定义由于晶体中出现填隙原子和杂质原子等等,它们引起晶格周期性的破坏发生在一个或几个晶格常数的限度范围内,这类缺陷统称为点缺陷。
这些空位和填隙原子是由热起伏原因所产生的,因此又称为热陷。
2.1.2空位、填隙原子和杂质■空位:晶体内部的空格点就是空位。
由于晶体中原子热运动,某些原子振动剧烈而脱离格点跑到表面上,在内部留下了空格点,即空位。
■填隙原子:由于晶体中原子的热运动,某些原子振动剧烈而脱离格点进入晶格中的间隙位置,形成了填隙原子。
即位于理想晶体中间隙中的原子。
■杂质原子:杂质原子是理想晶体中出现的异类原子。
2.1.3几种点缺陷的类型■弗仑克尔缺陷:原子(或离子)在格点平衡位置附近振动,由于非线性的影响,使得当粒子能量大到某一程度时,原子就会脱离格点,而到达邻近的原子空隙中,当它失去多余动能后,就会被束缚在那里,这样产生一个暂时的空位和一个暂时的填隙原子,当又经过一段时间后,填隙原子会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去。
若晶体中的空位与填隙原子的数目相等,这样的热缺陷称为弗仑克尔缺■肖特基缺陷:空位和填隙原子可以成对地产生(弗仑克尔缺陷),也可以在晶体内单独产生。
若脱离格点的原子变成填隙原子,经过扩散跑到晶体表面占据正常格点位置,则在晶体内只留下空位,而没有填隙原子,仅由这种空位构成的缺陷称之为肖特基缺陷. 形成填隙原子时,原子挤入间隙位置所需的能量比产生肖特基缺陷空位所需的能量大,一般地,当温度不太高时,肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多。
■杂质原子:实际晶体中存在某些微量杂质。
一方面是晶体生长过程中引入的;另一方面是有目的地向晶体中掺入的一些微量杂质。
当晶体存在杂质原子时,晶体的内能会增加,由于少量的杂质可以分布在数量很大的格点或间隙位置上,使晶体组态熵的变化也很大。
因此温度T下,杂质原子的存在也可能使自由能降低。
(F=U-TS)当杂质原子取代基质原子占据规则的格点位置时,形成替位式杂质,如图a;若杂质原子占据间隙位置,形成间隙式杂质,如图b对一定晶体,杂质原子是形成替位式杂质还是间隙式杂质,主要取决于杂质原子与基质原子几何尺寸的的相对大小及其电负性。
杂质原子比基质原子小得多时,形成间隙式杂质;替位式杂质在晶体中的溶解度也决定于原子的几何尺寸和化学因素。
■色心:色心是一种非化学计量比引起的空位缺陷。
该空位能够吸收可见光使原来透明的晶体出现颜色,因而称它们为色心, 最简单的色心是F心。
所谓F心是离子晶体中的一个负离子空位束缚一个电子构成的点缺陷。
与F心相对的色心是V心。
V心和F心在结构上是碱卤晶体中两种最简单的缺陷。
2,2线缺陷——线缺陷的产生及运动与材料的韧性、脆性密切相关。
2.2.1.线缺陷的定义:当晶格周期性的破坏发生在晶体内部一条线的周围则称为线缺陷,通常又称之为位错。
它是由于应力超过弹性限度而使晶体发生范性形变所产生的,从晶体内部看,它就是晶体的一部分相对于另一部分发生滑移,以致在滑移区的分界线上出现线状缺陷。
2.2.2位错的基本类型:常见的位错有两种形式:刃位错和螺位错。
■刃位错:亦称棱位错。
其特点是:原子的滑移方向与位错线的方向相垂直。
■螺位错:特点:是原子的滑移方向与位错线平行,且晶体内没有多余的半个晶面。
垂直于位错线的各个晶面可以看成由一个晶面以螺旋阶梯的形式构成。
当晶体中存在螺位错时,原来的一族平行晶面就变成为以位错线为轴的螺旋面。
螺位错■位错线的特征:1.滑移区与未滑移区的分界线;2.位错线附近原子排列失去周期性;3.位错线附近原子受应力作用强,能量高,位错不是热运动的结果;4.位错线的几何形状可能很复杂,可能在体内形成闭合线,可能在晶体表面露头,不可能在体内中断。
刃型位错的特点是位错线垂直于滑移矢量b;螺型位错的特点是位错线平行于滑移矢量b。
b又称为伯格斯(Burgers)矢量,它的模等于滑移方向上的平衡原子间距,它的方向代表滑移方向。
■除此之外,还存在位错线于滑移矢量既不平行又不垂直的混合型位错。
混合位错的原子排列介于刃型位错和螺型位错之间,可以分解为刃型位错和螺型位错。
2.3面缺陷——面缺陷的取向及分布与材料的断裂韧性有关2.3.1面缺陷的定义:当晶格周期性的破坏发生在晶体内部一个面的周围则称为面缺陷。
2.3.2常见的面缺陷的类型:■层错:是由于晶面堆积顺序发生错乱而引入的面缺陷,又称堆垛层错。
堆垛层错是指沿晶格内某一平面,质点发生错误堆垛的现象。
如一系列平行的原子面,原来按ABCABCABC……的顺序成周期性重复地逐层堆垛,如果在某一层上违反了原来的顺序,如表现为ABCABCAB│ABCABC……,则在划线处就出现一个堆垛层错,该处的平面称为层错面。
堆垛层错也可看成晶格沿层错面发生了相对滑移的结果。
■小角晶界:具有完整结构的晶体两部分彼此之间的取向有着小角度θ的倾斜,在角θ里的部分是由少数几个多余的半晶面所组成的过渡区,这个区域称小角晶界。
小角晶界是晶粒内两部分晶格间不严格平行,以微小角度的偏差相互拼接而形成的界面。
它可以看成是由一系列位错平行排列而导致的结果。
2.3.4体缺陷:在体缺陷中比较重要的是包裹体。
包裹体是晶体生长过程中界面所捕获的夹杂物。
它可能是晶体原料中某一过量组分形成的固体颗粒,也可能是晶体生产过程中坩埚材料带入的杂质微粒。
体缺陷主要是沉淀相、晶粒内的气孔和第二相夹杂物等。
3按缺陷产生的原因分类:热缺陷、杂质缺陷、非化学计量缺陷、其它原因(如电荷缺陷,辐照缺陷等)。
3.1热缺陷定义:热缺陷亦称为本征缺陷,是指由热起伏的原因所产生的空位或间隙质点(原子或离子)。
类型:弗仑克尔缺陷(Frenkel defect)和肖脱基缺陷(Schottky defect)热缺陷浓度与温度的关系:温度升高时,热缺陷浓度增加3.2杂质缺陷定义:亦称为组成缺陷,是由外加杂质的引入所产生的缺陷。
特征:如果杂质的含量在固溶体的溶解度范围内,则杂质缺陷的浓度与温度无关。
3.3非化学计量缺陷定义:指组成上偏离化学中的定比定律所形成的缺陷。
它是由基质晶体与介质中的某些组分发生交换而产生。
特点:其化学组成随周围气氛的性质及其分压大小而变化。
4产生原因晶体缺陷有的是在晶体生长过程中,由于温度、压力、介质组分浓度等变化而引起的;有的则是在晶体形成后,由于质点的热运动或受应力作用而产生。
它们可以在晶格内迁移,以至消失;同时又可有新的缺陷产生。
5性质晶体缺陷的存在对晶体的性质会产生明显的影响。
实际晶体或多或少都有缺陷。
适量的某些点缺陷的存在可以大大增强半导体材料的导电性和发光材料的发光性,起到有益的作用;而位错等缺陷的存在,会使材料易于断裂,比近于没有晶格缺陷的晶体的抗拉强度,降低至几十分之一。
6晶体缺陷对材料性能的影响(1)点缺陷对材料性能的影响晶体中点缺陷的不断无规则运动和空位与间隙原子不断产生与复合是晶体中许多物理过程如扩散、相变等过程的基础。
空位是金属晶体结构中固有的点缺陷,空位会与原子交换位置造成原子的热激活运输,空位的迁移直接影响原子的热运输,从而影响材料的电、热、磁等工程性能。
晶体中点缺陷的存在一方面造成点阵畸变,使晶体内能升高,增加了晶体热力学不稳定性,另一方面增大了原子排列的混乱程度,改变了周围原子的振动频率。
使熵值增大使晶体稳定。
矛盾因素使晶体点缺陷在一定温度下有一定平衡数目。
在一般情形下,点缺陷主要影响晶体的物理性质,如比容、比热容、电阻率等。
1. 比容:为了在晶体内部产生一个空位,需将该处的原子移到晶体表面上的新原子位置,导致晶体体积增大2.比热容:由于形成点缺陷需向晶体提供附加的能量(空位生成焓),因而引起附加比热容。
3.电阻率:金属的电阻来源于离子对传导电子的散射。
在完整晶体中,电子基本上是在均匀电场中运动,而在有缺陷的晶体中,在缺陷区点阵的周期性被破坏,电场急剧变化,因而对电子产生强烈散射,导致晶体的电阻率增大。
4. 密度的变化:对一般金属,辐照引起体积膨胀,但是效应不明显,一般变化很少超过0.1~0.2%,这种现象可以用弗仑克尔缺陷来描述5. 电阻:增加电阻,晶体点阵的有序结构被破坏,使原子对自由电子的散射效果提升。
一般可以通过电阻分析法莱追踪缺陷浓度的变化6.晶体结构:辐照很显著地破坏了合金的有序度,而且一些高温才稳定的相结构可以保持到室温7.力学性能:辐照引起金属的强化和变脆(注,空位使晶格畸变类似置换原子引起的)。
此外,点缺陷还影响其他物理性质,如扩散系数,内耗,介电常数等,在碱金属的卤化物晶体中,由于杂质或过多的金属离子等点缺陷对可见光的选择性吸收,会使晶体呈现色彩,这种点缺陷称为色心。
(2)线缺陷对材料性能的影响位错是一种及重要的晶体缺陷,他对金属的塑性变形,强度与断裂有很重要的作用,塑性变形就其原因就是位错的运动,而强化金属材料的基本途径之一就是阻碍位错的运动,另外,位错对金属的扩散、相变等过程也有重要影响。
所以深入了解位错的基本性质与行为,对建立金属强化机制将具有重要的理论和实际意义。
金属材料的强度与位错在材料受到外力的情况下如何运动有很大的关系。
如果位错运动受到的阻碍较小,则材料强度就会较高。
实际材料在发生塑性变形时,位错的运动是比较复杂的,位错之间相互反应、位错受到阻碍不断塞积、材料中的溶质原子、第二相等都会阻碍位错运动,从而使材料出现加工硬化。
因此,要想增加材料的强度就要通过诸如:细化晶粒(晶粒越细小晶界就越多,晶界对位错的运动具有很强的阻碍作用)、有序化合金、第二相强化、固溶强化等手段使金属的强度增加。
以上增加金属强度的根本原理就是想办法阻碍位错的运动。