第29卷第24期农业工程学报 V ol.29 No.242013年12月Transactions of the Chinese Society of Agricultural Engineering Dec. 2013 1 中国农业航空植保产业技术创新发展战略周志艳1,2,臧英1,2,罗锡文1,2※,Lan Yubin3,薛新宇4(1. 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642;2. 华南农业大学工程学院,广州 510642;3. United States Department of Agriculture, Agricultural Research Service, Aerial Application Technology Research Unit(USDA-ARS-AATRU), TX 77845, USA;4. 农业部南京农业机械化研究所植保机械重点实验室,南京 210014)摘要:农业航空是现代农业的重要组成部分和反映农业现代化水平的重要标志之一。
该文在分析中国农业现代化建设中对航空植保技术的需求及国内外航空植保发展现状的基础上,对中国航空植保产业体系进行了深入剖析。
指出了制约中国农业航空植保产业发展的主要问题,包括现有农业航空政策法规体系不完善、配套核心科学技术研究不足、专业队伍人才匮乏、社会化服务体系不健全、与农业航空相适应的农田作业环境基础建设被忽略、制度上缺少支持农业航空发展的公益性安排等。
并从提高航空植保作业适应性的多机型多作业方式、加大资金投入增强配套核心科学技术的攻关、以及出台有针对性的政策加强管理和规范等方面提出了大力推进中国农业航空植保产业快速健康发展的战略及对策建议。
最后对未来3个五年计划内中国对航空植保技术的需求情况进行了预测。
分析预测表明,中国农业航空产业是一个尚未真正启动的大产业,未来中国农业航空市场的需求将会有爆发性增长,拉动新增机型投入将达到465亿元以上。
随着相关制度及配套核心技术的不断完善,中国农业航空产业必将得到健康、有序和高速发展,有利于实现农业病虫害统防统治,实现精准作业,极大地提速中国现代农业的进程。
关键词:农业,航空,预测,战略规划,农业航空,航空植保,需求预测,发展战略doi:10.3969/j.issn.1002-6819.2013.24.001中图分类号:S25 文献标志码:A 文章编号:1002-6819(2013)-24-0001-10周志艳,臧 英,罗锡文,等. 中国农业航空植保产业技术创新发展战略[J]. 农业工程学报,2013,29(24):1-10.Zhou Zhiyan, Zang Ying, Luo Xiwen, et al. Technology innovation development strategy on agricultural aviation industry for plant protection in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 1-10. (in Chinese with English abstract)0 引 言保证粮食安全是中国的基本国策。
然而,在当前中国粮食作物生产过程中,植保仍以手工、半机械化操作为主,据统计,中国目前使用的植保机械以手动和小型机(电)动喷雾机为主,其中手动施药药械、背负式机动药械分别占国内植保机械保有量的93.07%和5.53%,拖拉机悬挂式植保机械约占收稿日期:2013-09-15 修订日期:2013-11-13基金项目:“十二五”国家“863”计划项目(SS2013AA100303,2012AA101901-3);国家自然科学基金项目(31371539);国家自然科学基金-广东省联合基金项目(U0931001);公益性行业(农业)科研专项(201403057)作者简介:周志艳(1972-),男(汉族),湖南永州人,博士,副教授,中国农业工程学会会员(E042100021M),主要从事农业航空应用技术研究。
广州市天河区五山路华南农业大学工程学院,510642。
Email: zyzhou@※通信作者:罗锡文(1945-),男(汉族),湖南株洲人,中国工程院院士,教授,中国农业工程学会会员(E041200118S),主要从事农业工程技术研究。
广州市天河区五山路华南农业大学工程学院,510642。
Email: xwluo@ 0.57%[1],植保作业投入的劳力多、劳动强度大,施药人员中毒事件时有发生。
据报道,广东省部分地区每天200元已请不到人工施药。
目前国内农药用量越来越大,作业成本高,且浪费严重,资源有效利用率低下,作物产量和质量难以得到保障,同时带来严重的水土资源污染、生态系统失衡、农产品品质下降等问题,无法适应现代农业发展的要求。
据统计,中国每年因防治不及时,病虫害造成的粮食作物产量损失达10%以上[2-3]。
农用飞机航空作业效益高,以无人驾驶直升机航空喷施作业为例,综合作业成本及收益对比分析结果显示(微小型无人飞机的使用寿命按5a计,机动喷雾机与手动喷雾器按3a计),采用25kg有效载荷的单旋翼油动力无人机和15kg有效载荷的单旋翼电动无人机进行喷施作业的年度收益分别是机动喷雾机的33倍和25倍,是人工手动喷雾(不计算人工成本)的133倍和93倍(来源于作者根据生产实践数据的推算);农用飞机航空作业速度快、突击能力强、防控效果好,飞机飞行产生的下降气流吹动叶片,农业工程学报 2013年2能使叶片正反面均能着药,防治效果相比人工与机械提高15%~35%,应对突发、爆发性病虫害的防控效果好[4-5];不受作物长势的限制,可解决作物生长中后期地面机械难以下田作业的问题,例如:作物生长至封行后行垄不清晰,特别是对于玉米等高秆作物,玉米大喇叭口期高度一般都在1.2 m以上,与拖拉机配套的普通悬挂式、牵引式喷杆喷雾机难以进入进行杀虫剂、杀菌剂、除草剂以及催熟脱叶剂、增糖剂、叶面肥料等喷洒作业[6-7],尤其在丘陵山区交通不便、人烟稀少或内涝严重的地区,地面机械难以进入作业,航空作业可很好地解决这一难题。
此外,与田间作业相比,飞机航空作业还有劳动用工少、作业成本低、不会留下辙印和损伤作物、不破坏土壤物理结构、不影响作物后期生长等特点[8],据统计报道,飞机航空作业与地面机械作业相比,每公顷可减少作物损伤及其他支出(油料、用水、用工、维修、折旧等)约105元[9]。
中国是一个农业大国,发展高效、安全的现代生态农业是中国农业现代化建设的重要目标。
因此,作为现代农业的重要组成部分和反映农业现代化水平的重要标志之一,农业航空在中国现代农业发展中具有重大需求[10]。
应用农业航空植保技术对提高中国农作物病虫害防治机械化水平,实行统防统治的专业化服务,提高农业资源的利用率,增强突发性大面积病虫害防控能力,缓解农村劳动力短缺,增强农业抗风险能力,保障国家粮食安全、生态安全,实现农业可持续发展具有十分重要的意义。
本文拟在分析现代农业对航空植保技术的需求及国内外航空植保发展现状的基础上,对中国航空植保产业体系进行剖析,预测未来3个五年计划内中国对航空植保技术的需求情况,提出大力推进中国农业航空植保产业快速健康发展的战略及对策建议。
1 国内外农业航空产业发展现状1.1 国外的发展现状从世界范围来看,农业航空较发达的国家主要有美国、俄罗斯、澳大利亚、加拿大、巴西、日本、韩国等国家。
美国是农业航空应用技术最成熟的国家之一,已形成较完善的农业航空产业体系,据统计,美国农业航空对农业的直接贡献率为15%以上。
目前美国有农用航空相关企业2 000多家,已成立国家农业航空协会(National Agricultural Aviation Association, NAAA)和近40个州级农业航空协会,NAAA有来自于46个州的会员1 800个[11]。
全国目前在用农用飞机4 000多架(共有机型20多种,以有人驾驶固定翼飞机为主,约占88%),在册的农用飞机驾驶员3 200多名,年处理40%以上的耕地面积,全美65%的化学农药采用飞机作业完成喷洒,其中水稻施药作业100%采用航空作业方式(此前,美国因农业劳动人工成本太高,一度放弃国内的水稻种植,大米全部进口。
后来使用了航空作业,到20世纪70年代末期,一跃而成为世界上主要的稻米出口国之一)[12]。
国家大力扶持农业航空产业的发展是美国农业航空发达的重要原因之一。
美国从上世纪70年代就开始研究航空喷施作业技术参数的优化模型,用户输入喷嘴、药液、飞机类型、天气因素等,通过对内部数据库调用,即可预测可能产生的飘移、雾滴的运动和地面沉积模式等[12-13]。
美国国会通过了豁免农用飞机每次起降100美元的机场使用费的议案,2014年白宫的预算中预计继续投入73亿美元支持该议案,以降低农业航空作业的成本;在NAAA的推动下,自2002年以来已投入约700万美元用于农业航空技术研发,参议院已通过议案将继续大力支持开发更高效、使用成本更低的农业航空相关技术[14]。
俄罗斯地广人稀,拥有数目庞大的农用飞机作业队伍,数量高达1.1万架,作业机型以有人驾驶固定翼飞机为主,年处理耕地面积约占总耕地面积35%以上[15]。
澳大利亚、加拿大、巴西农业航空的发展模式与美国类似,目前主要机型为有人驾驶的固定翼飞机和旋翼直升机。
加拿大农业航空协会(Canada Agricultural Aviation Association, CAAA)目前共有会员169个[16];巴西作为发展中国家,在国家政策的扶持下,包括农业航空在内的通用航空发展迅速,农业航空协会(Brazilian National Agricultural Aviation Association, SINDAG)目前共有单位会员143个,截至2008年3月,巴西注册农用飞机约1 050架[17]。
日本农民户均耕地面积较小,地形多山,耕地面积较小,不适合有人驾驶固定翼飞机作业,因此日本农业航空以直升机为主。
日本是最早将微小型农用无人机用于农业生产的国家之一,1990年,日本山叶公司推出世界第一架主要用于喷洒农药的无人机,无人机在农林业方面的应用发展迅速,日本农用无人机航空协会(Japan Unmanned Aerial Vehicle Association, JUAV)目前共有单位会员11个。
据日本农林水产省统计,截止到2010年10月底,登记在册的微小型农用无人机保有量为2 346架,无人飞机操控手14 163人[18],防治面积96.3万hm2,占航空作业38%,从2004年开始,水稻第24期周志艳等:中国农业航空植保产业技术创新发展战略 3生产中微小型农用无人直升机的用量已超过有人驾驶直升机[19]。