薄膜真空技术解读
1 1 1 1 1 1
Practical Unit Torr=1 mmHg mTorr=10-3 mmHg Pa=7.5×10-3 Torr Torr=133.3 Pa bar=105 Pa=750 Torr atm=1.013×105 Pa=760 Torr
三)真空区域大致划分
划分目的:为了研究真空和实际应用的便利; 划分依据:按照各个压强范围内气体运动特征的不同进行划分; 划分准则:理论上,可依据Knudsen数的不同进行划分
旋片式机械泵(Rotary Pump)
1、扩张(吸气)
2、容积最大
3、压缩
4、排气
(c)工作原理 机 械 泵:利用机械运动部件转动或滑动形成的输运作用获得真空的泵。 分 类:旋片式(最常见)、定片式、滑阀式 运转模式:吸气 压缩 排气 (不断循环) 基本特点:需加真空油(密封用);可从大气压开始工作; 真空度要求低 可单独使用;真空度要求高 作为 前级泵 使用 工作区间:单级:105~1 Pa;双级:105~10-2 Pa 优、缺点:结构简单、工作可靠;有油污染的问题。
基板的污染
蒸发分子(F)与残余气体分子(N)到达基板的速率 一般要求N/F 10-1 : P = 10-4-10-5Pa
例:计算在高真空的条件下,清洁衬底被环境中的杂质气 体分子污染所需时间。假设每一个向衬底运动过来的气 体分子都是杂质,且每一个分子都被衬底所俘获。 衬底完全被一层杂质气体分子覆盖所需要的时间为
105 6.667×10-8 数十nm <<0.01 粘滞流
大气状态 热运动剧烈 碰撞频繁
102 6.667×10-5 不到1 m ≥0.01 过渡段
粘滞流 分子流 分子-分子 与分子-器壁 碰撞几率相当
10-1 6.667×10-2 cm量级 ≥1
10-3 6.667 若干米
10-6 6.667×103 数 km >>1 分子流
利用各种真空泵把容器内的空气抽出,使其内部压强保持在 <1 atm的特定压强范围!
获得真空的主要工具 各种真空泵(Pump)!
气体输运泵:通过将气体不断吸入并排出真空泵达到排气的目的。 真空泵的分类 气体捕获泵:利用各种吸气材料和装置将被抽空间内的气体分子吸除。
真空泵的主要参数 抽气速率:单位时间内泵的抽气能力 极限真空:泵所能获得的最低压强 工作范围:泵能正常工作的压强范围 单位时间内气体流过抽气系统中任何截面的 体积称为体积流量,单位为升/秒, 与气体密度无关
“相对真空”
二) 真空的表示: 压强大小表示真空.
压强高: 真空度低; 压强低: 真空度高 Pa (Pascal, SI, 帕斯卡); 巴(bar): 1bar=105Pa
在真空技术中,除国际单位制的压力单位 Pa外,常以托(Torr)作 为真空度的单位。1托等于1毫米高的汞柱所产生的压力: 1Torr=133Pa 1标准大气压=101325 Pa(牛顿/米2 ) 1标准大气压=760mmHg=760(Torr) =1.0的工作原理是基于玻意耳-马略特定律PV=K
10-9 6.667×106 几千km
(m) 尺度 Kn
气体分子 流动特征 气体分子 运动特点 真空区域 工程划分
器壁碰撞为主 粒子直线飞行
分子数更少 分子间无碰撞 器壁碰撞几率也低
粗真空
低真空
高真空
超高真空
极高 真空
四) 真空在薄膜制备中的作用:抑制反应 减少蒸发分子与残余气体分子的碰撞(输运)
真空设备
为什么镀膜需要真空环境?
转移到基板表面 膜料 基板
镀膜的一般过程:
固态:箔金 液态 气态
气相淀积的优势: 牢固,外延生长(液相?)
几乎所有的现代光电薄膜材料制备都需要在真空或较低的气压条 件下进行 都涉及真空下气相的产生、输运和反应过程
物理气相淀积(PVD, physical vapor deposition) 化学气相淀积(CVD, chemical vapor deposition)
微观参量之间的关系:
压强, “自由程( , 气体分子间相邻 两次碰撞的距离)”, 分子密度(n)
一个分子在两次碰撞之间所占据的体积:
d2
V=N• d2
P=nkT
kT/ d2 P
Pressure unit SI(System International )Unit 1 Pa(Pascal)=1 Newton/m2 1 atm=1.013×105 Pa=760 mmHg 1 bar=105 N/m2=105 Pa
真空的基本知识
一) 真空的定义; 二) 度量单位; 三) 区域划分; 四)真空在薄膜制备 中的作用
一) 真空的定义
真空是指压力低于一个大气压的任何气态空间.
P nkT PV (m / M ) RT
n=7.21022(P/T)
P=1.3310-4 帕, T=293K, n= 3.21010 个/厘米3
相关物理:
1)Knudsen数 定义: K n
— 气体分子的平均自由程 D — 流场特征尺寸(如:管径)
物理意义:是描述稀薄气体流动状态的准数! 分子平均自由程大于流场特征尺寸时的气流称为Knudsen流,其 Kn 一般 > 10! 2)真空系统中气体运动特征的理论划分: 粘滞流(层流、Poiseuille流) 粘滞-分子流 分子流(自由分子流、Knudsen流)
气体分子的通量 (克努森方程) 其中N为衬底表面的原子面密度。在常温、常压条件下,洁 净表面被杂质完全覆盖所需的时间约为3.5x10-9 s,而在 3x10-8 Pa的超高真空中,上述时间可延长至10h左右。这说 明了在薄膜技术中获得和保持适当的真空环境的极端重要性。
真空的获得
真空的获得:就是所谓的“抽真空”!
Kn <0.01
Kn = 0.01~1
Kn >> 1
粘滞流状态:当气压较高时,气体分子的平均自由程很短,气体分子间的相 互碰撞极为频繁。 分子流状态:在高真空环境下,气体的分子除了与容器壁碰撞以外,几乎不 发生气体分子间的相互碰撞。特点是气体分子平均自由程超过气体容器的尺 寸或与其相当。
P (Pa)