当前位置:文档之家› 可变气门正时(发展史)1

可变气门正时(发展史)1

1 / 20 ` 可变气门正时的昨天/今天/明天2 / 20`一、 发展史VVT 的技术发展进程:3 / 20`4 / 20`5 / 20`VVT 第一代叶片式-链驱动:6 / 20`VVT 第一代叶片式-皮带轮驱动:7 / 20`VVT 第二代发展:8 / 20`9 / 20`VVT技术VVT技术至今已经有30余年的历史,1980年,AlfaRomeo首次使用VVT技术;Honda,1989年,首次使用具有可变气门升程能力的VVT技术;BMW,2001年,首次使用VVT技术取代了传统的节气门。

韩系车的VVT是根据日本中的丰田的VVT-I和本田的VTEC技术模仿而来,但是相比丰田的VVT-I可变正时气门技术,VVT仅仅是可变气门技术,缺少正时技术,所以VVT发动机确实要比一般的发动机省油,但是赶不上日系车的丰田和本田车省油。

BMW在之前的一代发动机中早已采用该技术,目前如本田的VTEC、i-VTEC、;丰田的VVT-i;日产的CVVT;三菱的MIVEC;铃木的VVT;现代的VVT;起亚的CVVT;江淮的VVT;长城的VVT等也逐渐开始使用。

总的说来其实就是一种技术,名字不同。

10 / 20`VVT-iVVT-i的由来VVT中文意思是“可变气门正时”,由于采用电子控制单元(ECU)控制,因此丰田起了一个好听的中文名称叫“智慧型可变气门正时系统”。

该系统主要控制进气门凸轮轴,又多了一个小尾巴“i”,就是英文“Intake”(进气)的代号。

这些就是“VVT-i”的字面含义了。

VVT—i.系统是丰田公司的智能可变气门正时系统的英文缩写,最新款的丰田轿车的发动机已普遍安装了VVT—i系统。

丰田的VVT—i系统可连续调节气门正时,但不能调节气门升程。

它的工作原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。

VVT-i技术11 / 20`VVT-i是一种控制进气凸轮轴气门正时的装置,它通过调整凸轮轴转角配气正时进行优化,从而提高发动机在所有转速范围内的动力性、燃油经济性,降低尾气的排放。

VVT-i系统由传感器、ECU和凸轮轴液压控制阀、控制器等部分组成。

ECU储存了最佳气门正时参数值,曲轴位置传感器、进气歧管空气压力传感器、节气门位置传感器、水温传感器和凸轮轴位置传感器等反馈信息汇集到ECU并与预定参数值进行对比计算,计算出修正参数并发出指令到控制凸轮轴正时液压控制阀,控制阀根据ECU指令控制机油槽阀的位置,也就是改变液压流量,把提前、滞后、保持不变等信号指令选择输送至VVT-i控制器的不同油道上。

VVT-i用途VVT-i系统视控制器的安装部位不同而分成两种,一种是安装在排气凸轮轴上的,称为叶片式VVT-i,丰田PREVIA(大霸王)安装此款。

另一种是安装在进气凸轮轴上的,称为螺旋槽式VVT-i,丰田凌志400、430等高级轿车安装此款。

两者构造有些不一样,但作用是相同的。

12 / 20`叶片式VVT-i控制器由驱动进气凸轮轴的管壳和与进气凸轮轴相耦合的叶轮组成,来自提前或滞后侧油道的油压传递到排气凸轮轴上,导致VVT-i控制器管壳旋转以带动进气凸轮轴,连续改变进气正时。

当油压施加在提前侧油腔转动壳体时,沿提前方向转动进气凸轮轴;当油压施加在滞后侧油腔转动壳体时,沿滞后方向转动进气凸轮轴;当发动机停止时,凸轮轴液压控制阀则处于最大的滞后状态。

螺旋槽式VVT-i控制器包括正时皮带驱动的齿轮、与进气凸轮轴刚性连接的内齿轮,以及一个位于内齿轮与外齿轮之间的可移动活塞,活塞表面有螺旋形花键,活塞沿轴向移动,会改变内、外齿轮的相位,从而产生气门配气相位的连续改变。

当机油压力施加在活塞的左侧,迫使活塞右移,由于活塞上的螺旋形花键的作用,进气凸轮轴会相对于凸轮轴正时皮带轮提前某个角度。

当机油压力施加在活塞的石侧,迫使活塞左移,就会使进气凸轮轴延迟某个角度。

当得到理想的配气正时,凸轮轴正时液压控制阀就会关闭油道使活塞两侧压力平衡,活塞停止移动。

13 / 20`现在,先进的发动机都有“发动机控制模块”(ECM),统管点火、燃油喷射、排放控制、故障检测等。

丰田VVT-i发动机的ECM在各种行驶工况下自动搜寻一个对应发动机转速、进气量、节气门位置和冷却水温度的最佳气门正时,并控制凸轮轴正时液压控制阀,并通过各个传感器的信号来感知实际气门正时,然后再执行反馈控制,补偿系统误差,达到最佳气门正时的位置,从而能有效地提高汽车的功率与性能,尽量减少耗油量和废气排放。

在相当长的一段时间内,发动机的设计一直比较中庸,没有任何一款机器能够既保证高转的有效性,又保证低转的大扭矩。

不过,在上世纪70年代初,出于减排目的而开发的可变凸轮正时技术却给了发动机设计界一个重要的启示。

在重叠阶段应用气门正时调节可以通过废气来降低温度,从而减少NOx的排放。

因此,在上个世纪七十年代,废气外循环(EGR)技术在减少NOx方面的效果已经被广泛接受,但是,如果能够形成内循环的话,发动机的设计将更为简单。

所以,后来人们应用了更长的重叠时间,从而使部分废气能够在进气冲程时进入气缸。

不过,14 / 20`虽然这个问题得到了解决,但是,怠速和低速的工作效果又受到了影响,并使发动机无法在起步阶段通过废气高温来激活催化剂,所以,人们开始使用了可变凸轮正时技术。

最先将气门正时技术应用在量产车中的公司是意大利的阿尔法罗密欧。

作为第一个开发出了双凸轮轴量产发动机的厂商,他们用两根不同的凸轮轴来控制进气气门和排气气门的开闭时间,从而达到了比单凸轮轴更为有效的效果。

这家车厂一名叫Giampaolo Garcea的工程师发明了一个装置,就是在进气凸轮轴的主动链轮里加上一个设备,并由螺旋键槽将其与凸轮相连接,来改变气门的正时效果。

它设计的发动机标准重叠时间为16度,但在发动机高速运转的时候,它可以将开启时间增加32度,从而使重叠时间扩大到48度。

最先配备这种系统的车型就是阿尔法罗密欧Spider。

当这款车在欧洲销售的时候,该公司进一步增大了重叠角度以获得更好的燃油经济性。

后来在配备了Bosch公司的Motronic发动机管理系统之后,发动机的正时技术便越来越依赖于ECU的作用了。

15 / 20`紧随阿尔法罗密欧的就是日产和本田。

这两家日本公司分别在1987年和1989年,研发出了他们自己的双顶置凸轮轴系统,也就是后来所说的NVCS和VTEC系统。

在1992年,宝马公司也开发出了自己的Vanos系统,最先被应用在了进气凸轮轴上,后来,又于1998年,推出了他们的双Vanos系统。

而保时捷公司的办法则是在两根凸轮轴之间应用一个链条对气门正时进行调节。

不过,上述所介绍的这些系统都属于双凸轮发动机,但那些单顶置凸轮的发动机又怎样实现气门正时的最优解呢?当然,最简单的办法就是改变整个凸轮轴的旋转位置。

然而,由于凸轮轴上的凸轮的位置都是相对固定的,所以无法在工作中改变进排气的重叠时间。

于是,通用公司在2005年推出了一种新技术,那就是在凸轮轴的驱动端安装上一个液压相位调节装置,从而改变进气气门的重叠时间。

当然,通过在凸轮轴的驱动段安装液压相位调节机构来调节并不难实现。

但问题是,如何在一个凸轮上改变进气和排气凸轮的相对相位。

1973年,通用公司进行了相关的实验。

他们通过将一个大凸轮轴内设置一个同心小凸轮轴,16 / 20`在小凸轮上安装一套排气气门,这样,可以通过螺旋花键来改变进气凸轮与排气凸轮的相对位置,从而实现可变气门正时。

不过,这项技术由于过于复杂,造价太高而最终没能得到大规模的使用。

正当人们深陷于复杂的设计而无法量产的时候,凸轮轴制造技术上的改变激发了人们的想象。

随着凸轮轴制造技术变成了组装生产,因此,Mechadyne将两端都装上了凸轮,并在凸轮轴的驱动端配备了一个相位调节机构,从而形成了可独立调节进气和排气正时的SCP凸轮轴。

17 / 20`在上世纪90年代末,Mechadyne便开始为它的想法找寻有兴趣的投资人。

而克莱斯勒的蝰蛇设计小组对它的这个项目产生了浓厚的兴趣。

虽然当时研发的蝰蛇V10发动机在动力上非常强大,它的重叠时间很长,不过,在怠速和低速排放方面却无法满足OBD的要求。

因此,他们认为只有可变气门正时技术才能解决这个难题。

在2002年,通过Mechadyne和小组其他人员开始想办法将英国公司的SCP技术应用到他们的发动机中。

不过,这项技术也遇到了问题,因为通过改变凸轮轴轴承的直径来放置更为复杂系统的方式将会给生产环节带来更大的难题。

最终,克莱斯勒公司选择了只改变排气气门正时的技术,使其降低低转下重叠的时间。

通过这个技术,可以将昂贵的电传控制省去,使结构更加简单。

后来,德国的Mahle根据这项技术对SCP凸轮轴进行生产,并将其演化为一种名叫“CamlnCam”的技术。

因此,在08款的蝰蛇SRT10的8.4升发动机上,它不仅能够满足OBD对排放的要求,而且,还可以在6100转下产生600马力的最大功率和747牛米的巨大扭矩。

此外,至于为什么没有在进气气门上应用SCP凸轮轴,主要的原因是由于即便是将动力性还可以再提高一个水平,但对于蝰蛇来说,增加的功率也只会是演变成更多的胎烟而已,没有什么实际意义。

18 / 20`说到这里,我们是不是找到了一个终极解决办法呢?并没有。

不过,目前比较先进的方法被称为非凸轮控制技术,这种技术可以在液压作用力或电磁力下对气门的开合进行单独控制。

它的优点在于能够根据发动机的转速来实时调节,控制实际上就是由中央处理器完成的。

在电磁泵的作用下,通过弹簧来控制节气门的开合。

此外,还需要传感器向控制中心进行气门工作状态反馈。

在这个方面,英国的莲花公司发展的比较快,开发出了一种名叫主动配气系统(AVT)技术。

而法国人也在无凸轮控制技术方面发展迅速。

德国的FEV,Bosch和AVL也都拥有自己在这个领域的独门绝技。

宝马公司更是已经将其Valvetronic系统应用到了它的无凸轮发动机上。

19 / 20`无凸轮的可变气门正时技术还将开启发动机设计新的篇章,也就是被称为“可控自动点火系统”(CAI),这种系统可以使一台汽油发动机像柴油发动机一样的工作(Diesotto)。

在进气冲程阶段,气缸内的很多热点再加上再循环的废气热量构成强大的压力,使汽油燃烧,从而不需要火花塞的介入。

压燃过程所需要的内外循环的废气正好是无凸轮发动机所能给予的,据计算,这种燃烧方式可以使发动机的燃油经济性提高10%以上。

四冲程发动机的设计非常完美,但伴随它的技术却需要在不断的发展中持续更新。

相关主题