肺通气肺通气(pulmonary ventilation)是肺与外界环境之间的气体交换过程。
实现肺通气的器官包括呼吸道、肺泡和胸廓等。
呼吸道是沟通肺泡与外界的通道;肺泡是肺泡气与血液气进行交换的主要场所;而胸廓的节律性呼吸运动则是实验通气的动力。
肺通气的原理完成从鼻腔到肺泡,和肺泡到鼻腔的气体传送,需要动力克服阻力。
肺泡与外界环境的压力差是肺通气的直接动力,呼吸肌的舒张收缩运动是肺通气的原动力.肺泡的阻力包括:弹性阻力和非弹性阻力.肺通气功能的评价指标(一)肺容积(二)肺通气量(一)基本肺容积肺的四种基本容积,它们互不重叠,全部相加等于肺的最大容量。
1.潮气量每次呼吸时吸入或呼出的气量为潮气量(tidal volume,TV)。
平静呼吸时,潮气量为400-600ml,一般以500ml 计算。
运动时,潮气量将增大。
2.补吸气量或吸气贮备平静吸气末,再尽力吸气所能吸入的气量为补吸气量(inspiratory reserve volume,IRV),正常成年人约为1500-200ml。
3.补呼气量或呼气贮备量平静呼气末,再尽力呼气所能呼出的气量为补呼气量(espiratory reserve volume,ERV),正常成年人约为900-1200ml。
4.余气量或残气量最大呼气末尚存留于肺中不能再呼出的气量为余气量(res idual volume,RV)。
只能用间接方法测定,正常成人约为1000-1500ml。
支气管哮喘和肺气肿患者,余气量增加。
目前认为余气量是由于最大呼气之末,细支气管,特别是呼吸性细支气管关闭所致。
(二)肺容量是基本肺容积中两项或两项以上的联合气量(图5-5右)。
1.深吸气量从平静呼气末作最大吸气时所能吸入的气量为深吸气量(inspiratory capacity),它也是潮气量和补吸气量之和,是衡量最大通气潜力的一个重要指示。
胸廓、胸膜、肺组织和呼吸肌等的病变,可使深吸气量减少而降低最大通气潜力。
2.功能余气量平静呼气末尚存留于肺内的气量为功能余气量(functional residual capacity,FRC),是余气量和补呼气量之和。
正常成年人约为2500ml,肺气肿患者的功能余气量增加,肺实质性病变时减小。
功能余气量的生理意义是缓冲呼吸过程中肺泡气氧和二氧化碳分压(PO2和PCO2)的过度变化。
由于功能余气量的稀释作用,吸气时,肺内PO2不至突然升得太高,PCO2不致降得太低;呼气时,肺内PO2则不会降得太低,PCO2不致升得太高。
这样,肺泡气和动脉血液的PO2和PCO2就不会随呼吸而发生大幅度的波动,以处于气体交换。
3.肺活量和时间肺活量最大吸气后,从肺内所能呼出的最大气量称作肺活(vital capacity,VC),是潮气量、补吸气量和补呼气量之和。
肺活量有较大的个体差异,与身材大小、性别、年龄、呼吸肌强弱等有关。
正常成年男性平均约为3500ml,女性为2500ml。
肺活是反映了肺一次通气的最大能力,在一定程度上可作为肺通气功能的指标。
但由于测定肺活量时不限制呼气的时间,所以不能充分反映肺组织的弹性状态和气道的通畅程度,即通气功能的好坏。
例如,某些病人肺组织弹性降低或呼吸道狭窄,通气功能已经受到损害,但是如果延长呼气时间,所测得的肺活量是正常的。
因此,提出时间肺活量(timed vital capacity),也称用力呼气量的概念,用来反映一定时间内所能呼出的气量。
时间肺活量为单位时间内呼出的气量占肺活量的百分数。
测定时,让受试者先作一次深吸气,然后以最快的速度呼出气体,同时分别测量第1、2、3s末呼出的气量,计算其所占肺活量的百分数,分别称为第1、2、3s的时间肺活量(图5-7),正常人各为83%、96%和99%肺活量。
时间肺活量是一种动态指标,不仅反映肺活量容量的大小,而且反映了呼吸所遇阻力的变化,所以是评论肺通气功能的较好指标。
阻塞性肺疾病患者往往需要5-6秒或更长的时间才能呼出全部肺活量。
4.肺总量肺所能容纳的最大气量为肺总量(total lung capacity,TLC),是肺活量和余气量之和。
其值因性别、年龄、身材、运动锻炼情况和体位而异。
成年男性平均为5000ml,女性3500ml。
肺通气量(一)每分通气量每分通气量(minute ventilation volume)是指每分钟进或出肺的气体总量,等于呼吸频率乘潮气量。
平静呼吸时,正常成年人呼吸频率每分-18次,潮气量500ml,则每分通气量6-9L。
每分通气量随性别、年龄、身材和活动量不同而有差异。
为便于比较,最好在基础条件下测定,并以每平方米体表面积为单位来计算。
劳动和运动时,每分通气量增大。
尽力作深快呼吸时,每分钟所能吸入或呼出的最大气量为最大通气量。
它反映单位时间内充分发挥全部通气量,是估计一个人能进行多大运动量的生理指标之一。
测定时,一般只测量10s或15s最深最快的呼出或吸入量,再换算成每分钟的,即为最大通气量。
最大通气量一般可达70-120L。
比较平静呼吸时的每分通气量和最大通气量,可以了解通气功能的贮备能力,通常用通气贮量百分比表示:通气贮量百分比=[(最大通气量-每分静通气量)/最大通气量]×100%正常值等于或大于93%。
(二)无效腔和肺泡通气量每次吸入的气体,一部分将留在从上呼吸道至呼吸性细支气管以前的呼吸道内,这部分气体均不参与肺泡与血液之间的气体交换,故称为解剖无效腔(anatomical dead space),其容积约为150ml。
进入肺泡内的气体,也可因血流在肺内分布不均而未能都与血液进入气体交换,未能发生气体交换的这一部分肺泡容量称为肺泡无效腔。
肺泡无效腔与解剖无效腔一起合称生理无效腔(physiollgical dead space)。
健康人平卧时生理无效腔等于或接近于解剖无效腔。
由于无效腔的存在,每次吸入的新鲜空气不能都到达肺泡进入气体交换。
因此,为了计算真正有效的气体交换,应以肺泡通气量为准。
肺泡通气量(alveolar ventilation)是每分钟吸入肺泡的新鲜空气量,等于(潮气量-无效腔气量)×呼吸频率。
如潮气量是500ml,无效腔气量是150ml,则每次呼吸仅使肺泡内气体更新1/7左右。
潮气量和呼吸频率的变化,对肺通气和肺泡通气有不同的影响。
在潮气量减半和呼吸频率加倍或潮气量加倍而呼吸频率减半时,肺通气量保持不变,但是肺泡通气量却发生明显的变化,如表5-1所示。
故从气体交换而言,浅而快的呼吸是不利的。
高频通气近年来,临床上在某些情况下(如配合支气管镜检查,治疗呼吸衰竭等)使用一种特殊形式的人工通气,即高频通气。
这是一种频率很高,潮气量很低的人工通气,其频率可为每分钟60-100次或更高,潮气量小于解剖无效腔,但却可以保持有效的通气和换气,这似乎与上述浅快呼吸不利于气体交换的观点矛盾。
目前,对于高频通气何以能维持有效的通气和换气还不太清楚,可能其通气原理与通常情况下的通气原理不尽相同,有人认为它和气体对流的加强及气体分子扩散的的加速有关。
高频通气的临床应用和通气原理都有待进一步研究。
肺换气肺通气使肺泡不断更新,保持了肺泡气PO2、PCO2的相对稳定,这是气体交换得以顺利进行的前提。
气体交换包括肺换气和组织换气,在这两处换气的原理一样。
(一)交换过程混合静脉血流经肺毛细血管时,血液PCO2是 5.32kPa(40mmHg),比肺泡气的13.83kPa(104mmHg)低,肺泡气中O2便由于分压的差向血液扩散,血液的PCO2便逐渐上升,最后接近肺泡气的PCO2。
CO2则向相反的方向扩散,从血液到肺泡,因为混合静脉血的PCO2是6.12kPa(46mmHg),肺泡的PCO2是5.32kPa(40mmHg)。
(图5-8)。
O2和CO2的扩散都极为迅速,仅需约0.3s即可达到平衡。
通常情况下血液流经肺毛细血管的时间约0.7s,所以当血液流经肺毛细血管全长约1/3时,已经基本上完成交换过程(图5-9)。
可见,通常情况下肺换气时间绰绰有余。
(二)影响肺部气体交换的因素前面已经提到气体扩散速率受分压差、扩散面积、扩散距离、温度和扩散系数的影响。
这里只需具体说明肺的扩散距离和扩散面积以及影响肺部气体交换的其它因素,即通气/血流比值的影响。
1.呼吸膜的厚度在肺部肺泡气通过呼吸膜(肺泡-毛细血管膜)与血液气体进行交换。
气体扩散速率与呼吸膜厚度成反比关系,膜越厚,单位时间内交换的气体量就越少。
呼吸膜由六层结构组成(图5-10);含表面活性物质的极薄的液体层、很薄的肺泡上皮细胞层、上皮基底膜、肺泡上皮和毛细血管膜之间很小的间隙、毛细血管的基膜和毛细血管内皮细胞层。
虽然呼吸膜有六层结构,但却很薄,总厚度不到1μm,有的部位只有0.2μm,气体易于扩散通过。
此外,因为呼吸膜的面积极大,肺毛细血管总血量不多,只60-140ml,这样少的血液分布于这样大的面积,所以血液层很薄。
肺毛细血管平均直径不足8μm,因此,红细胞膜通常能接触至毛细血管壁,所以O2、CO2不必经过大量的血浆层就可到达红细胞或进入肺泡,扩散距离短,交换速度快。
病理情况下,任何使呼吸膜增厚或扩散距离增加的疾病,都会降低扩散速率,减少扩散量,如肺纤维化、肺水肿等,可出现低氧血症;特别是运动时,由于血流加速,缩短了气体在肺部的交换时间,这时呼吸膜的厚度和扩散距离的改变显得更有重要性。
2.呼吸膜的面积气体扩散速率与扩散面积成正比。
正常成人肺有3亿左右的肺泡,总扩散面积约70m2。
安静状态下,呼吸膜的扩散面积约40m2,故有相当大的贮备面积。
运动时,因肺毛细血管开放数量和开放程度的增加,扩散面积也大大增大。
肺不张、肺实变、肺气肿或肺毛细血管关闭和阻塞均使呼吸膜扩散面积减小。
3.通气/血流比值的影响通气/血流比值(ventilation/perfusion ratio)是指每分肺通气量(VA)和每分肺血流量(Q)之间的比值(VA/Q),正常成年人安静时约为4.2/5=0.84。
不难理解,只有适宜的VA/Q才能实现适宜的气体交换,这是因为肺部的气体交换依赖于两个泵协调工作。
一个是气历史意义,使肺泡通气,肺泡气得以不断更新,提供O2,排出CO2;一个是血泵,向肺循环泵入相应的血流量,及时带起摄取的O2,带来机体产生的CO2。
如果VA/Q比值增大,这就意味着通气过剩,血流不足,部分肺泡气未能与血液气充分交换,致使肺泡无效腔增大。
反之,VA/Q下降,则意味着通气不足,血流过剩,部分血液流经通气不良的肺泡,混合静脉血中的气体未能得到充分更新,未能成为动脉血就流回了心脏。
犹如发生了动-静脉短路,只不过是功能性的而不是解剖结构所造成的动-静脉短路。
由此可见,VA/Q增大,肺泡无效腔增加;VA/Q减小,发生功能性动-静脉短路。