测井资料地质解释-第2章
2.2 根据测井确定岩石成分 1 元素成分的确定
1) 自然伽马能谱测井(NGS): 提供: 铀(U) (ppm)、钍(Th)(ppm)、 钾(K) (%) 含量
2) 次生伽马能谱测井(GST):
提供: 碳(C) 、氧(O)、 硅(Si) 、铁(Fe)、 钙(Ca)、硫(SElectronics Heat Sink Internal Dewar Flask
剥谱处理
元素产额 干元素比重
Si, Ca, Fe, S, Ti, Gd
闭合氧环分析
谱岩性分析
干岩性比重
泥、碳酸盐岩、QFM、硬石膏、。。。
2 矿物成分的确定 岩石矿物成分的正确确定,决定于:
(1)矿物模型和测井特征参数的选择; (2)对测井响应方程求解的结果。
3、变质岩
由其它岩石在高温、高压作用下通过化学的、矿物的、 结构的和构造的转变而形成。
在大类的基础上,一般岩石的分类是根据 1)岩石的主要矿物成分(石英、长石、……) 2)结构(晶体或者颗粒大小、排列、……) 认识: 岩石是由矿物组成的。不同类型的岩石由少数矿物组合构 成;每一种矿物具有特有的特性,具有特有的百分比;具有 特有的结构和分子式。 不同类型的岩石由少数矿物组合构成。 在沉积岩中,20种矿物构成岩石的99%. 沉积岩往往由至多4种矿物或主要组分组成。
ECS 的伽马能谱 非弹性散射与俘获
Gd H Si Cl In e la s t ic
非弹性散射
0 50 100 150 200 250
Log Scale
Fe
ECS 仪器和数据处理流程
AmBe Source
BGO Crystal and PMT Boron Sleeve
6.6 ft
• 测速: 1800 ft/hr • 纵向分辨率: 1.5 ft • 井眼流体: 任何流体 • 仪器尺寸: 5.0 in O. D. • 长度: 6.6 ft • 最大温度: 350 oF(175 oC) • 最大压力: 20,000 psi • 最小井眼尺寸: 6.00 in
3 不同岩石的区分(岩性的确定) 根据不同岩性的岩石在测井响应上的差异。
岩性识别
ECS识别岩性
彩44井岩性识别图版(Fe-Si-clay)
横轴为硅曲线,纵轴为铝曲线,Z轴为铁曲线, 图中彩色点由蓝到红的变化,表示铁值由小到大的变化,反映岩性 由砂岩到泥岩的变化。图中右下角的点为煤层的反映。
501
第2章 岩石成分的确定
2.1 岩石的分类
按形成模式将岩石分为3大类:
1、火成岩或侵入岩
来自呈熔融状态岩浆体的凝固。在深部进行的凝固叫做深成 岩(或侵入火成岩),在地表进行的凝固叫做火山岩(或喷出 火成岩)。 深成岩没有孔隙特征,其晶体紧密地成叠瓦状排列,但深成 岩可产生蚀变和破裂破裂,有利于储层发育。
彩501井岩性识别图版(Fe-Si-clay)
彩45井岩性识别图版(Fe-Si-clay)
DEN/g/cm3
GR/API
玄武岩与玄武质角砾岩分开
2、沉积岩
1)碎屑岩:风化剥蚀产生的各种各样的碎屑,经过风、水等 的搬运、然后沉积形成的。 陆源碎屑岩:由地表露头侵蚀和蚀变剥落的岩石碎屑堆积 而形成。 火成碎屑岩:由岩浆碎屑堆积而成。 生物碎屑岩 2)化学岩和生物化学岩:由于溶解作用、或压力、温度的 变化、或生物活动而形成。 碳酸盐岩、蒸发岩、硅酸盐岩、……
3) 元素测井(地层元素俘获能谱测井)(ECS):
ECS测井简介
元素俘获能谱测井(Element Capture Spectroscopy),简称为ECS测井。 它是斯仑贝谢公司推出的一种新型测井仪器,这种仪器的测量原理与其早先推 出的次生γ能谱仪(GST)和储层饱和度探测仪(RST)相类似,但ECS测井速度快, 并同时测量记录非弹性散射与俘获时产生的瞬发γ射线。 通过解谱和氧化物闭合模型得到地层中主要造岩元素(Si 、Ca、Fe、Al、S、 Ti、Cl、Cr、Gd等)的相对百分含量,并应用聚类分析、因子分析等方法定量求 解地层的矿物含量。
对于矿物模型,应该具有:
(1)构成其矿物成分性质的准确概念; (2)流体性质。
测井测量值决定于:
(1)岩石中存在的每种矿物特有的特性; (2)每种矿物在研究岩石中所占百分比; (3)占据孔隙空间的流体性质和百分比。
矿物模型的选择有二种方法:
(1)根据测井资料本身,通过交会图技术等; (2)岩屑、岩心、区域地质等。