当前位置:文档之家› 全球增温变化对植物的影响

全球增温变化对植物的影响

全球增温变化对植物的影响摘要:从全球增温变化对植物影响的分析,阐述温度对全球植物群落的影响,包括对植物群落分布的影响,物种多样性的影响,以及对群落中物种个体的影响。

在温度较低的月份,人为增加温度能够提高群落的多样性指数。

不同功能型物种(乔本幼苗、落叶型和常绿型灌木、草本类)物候和生长对增温响应的方式差异不明显,基本表现为春季物候提前、秋季物候推迟;营养生长增加,而生殖生长影响不大。

但不同功能型物种对模拟增温度响应的强度存在一定程度的差异。

关键词:全球变化;植物群落;物种多样性;物候;生长目前,全球变化(global change)、生物多样性(biodiversity)和可持续发展(sustainable development)等全球性环境问题为世人瞩目,被称为世界三大环境热点,而其中的CO2浓度升高导致的温室效应和全球气候变化以及其对陆地生态系统的影响,以及生态系统对全球气候变化的响应和反馈是关系到人类社会和经济生活、农林牧业生产、资源和生存环境的重大问题,成为众多科学工作者、各国政府领导人及普通民众所共同关注的焦点问题,全球变化与陆地生态系统(Global change and terrestrial ecosystem,GCTE)是全球变化研究的重要内容,而气候变化对陆地生态系统的影响及其反馈是GCTE研究的热点。

气候变暖作为全球变化的主要表现之一,已经成为一个不争的事实。

它是指当前的全球平均温度比过去数千年平均气温要高的现象。

目前,有充分的证据表明,人类活动导致了大气层中“温室气体”的不断累积,从而使得全球气温逐步上升。

根据IPCC的预测, CO2浓度和其它温室气体的共同作用将会导致全球平均气温每10年上升0.2℃。

在高原和高山极端环境影响下所形成的高寒草甸生态系统极其脆弱,对人类干扰和由于温室效应引起的全球气候变化极其敏感,对这些干扰和变化的响应具有超前性。

因此,近年来气候变化对高寒草甸植被的影响,已引起众多科学工作者的广泛关注,但仅限于对整个群落方面的研究[1, 2, 6]。

自工业革命以来,全球平均表面温度(陆地表面温度和海洋表面温度的平均)增加了0.6±0.2℃,这个值比截止到1994年的SAR(IPCC第二次评估报告)的估计值高出了0.15℃,主要是由于1910~1945年和1995~2000年两个时段增温最明显。

变暖程度冬季较夏季明显,高纬度地区比低纬度地区明显,夜间比白天明显,陆地比海洋显著。

专家们估计到2030年,大气中的CO2等温室气体还将增加一倍,即比工业化之前的280ppm增加一倍,达到560ppm以上,全球气温可能上升1.5~4.5℃。

大量监测和模拟研究己表明:由上个世纪开始的全球温室效应在新的世纪正在继续和扩大。

在未来50~100年间,地球表面温度可能升高1~3.5℃,在高纬度和高海拔地区温度升幅会更大。

未来百年中,地球表面变暖的平均速度将比20世纪所观测到的变暖速率更大,可能在过去的一万年中是没有先例的。

政府间气候变化专门委员会(IPCO第四次评估报告预测,到本世纪末,全球平均气温将升高1.8~4.0℃。

温度是植物生长的必需条件,温度变化不仅会影响地表植被的种群及群落结构,而且会影响各种植物的生长发育与繁衍。

温度是植物发育的重要条件,是一种无处不起重要作用的生态因子,任何生物都是生活在具有一定温度的外界环境中并受温度变化的影响。

当环境温度发生改变时,无性系植物和有性生殖的植物会对温度变化作出响应。

温度控制着生态系统中许多生物化学反应速率,且几乎影响所有生物学过程。

低温和短的生长季是高山生态系统两个主要的限制因子。

植物物候与生长是对气候变化敏感且易观测得指标,两者的变化直接影响到生态系统碳收支。

同时,植物物候过程在众多方面(生物间的相互作用,植被对大气界面层的反馈作用,碳、氮、水等主要生态系统过程及物种的迁移与适应)都扮演着重要的角色。

因此植物物候的变化可能引起一系列生态学反应,最终对生态系统结构和功能造成某些不确定的影响。

目前研究发现增温一般能延长生长季、促进植物生长发育,这将可能有助于北半球植被净初级生产力的增加,并对目前由大气CO2浓度升高引起的全球变暖形成一个负反馈,但全球气候变化导致的植被及其它生理过程的变化有可能减弱或抵消此正效应,目前对此研究还有极大的不确定性。

1增温对植物个体的影响1.1植物物候的影响随着气候的变化植物物候期发生显著变化,明显地反映气候的变化与波动。

有关植物物候的现有数据和知识,包括大量的实验研究,表明所观测到的变化大多是与不断升高的温度有关。

温度升高使植物接近其最适温度且延长生长季节,植物的生长速度加快。

增温条件下,矮嵩草草甸植物的生长期被延长,植物群落的枯黄期被延迟[2]。

陈效逑等[3]对近50年来北京春季物候的变化分析发现,近50年来北京春季物候经历了3个周期的早晚振荡,近10多年来北京的物候异常偏早,这与北京连续10多年的暖冬和春季偏早一致,且未来10年春季物候仍将偏早。

根据地面物候资料,加拿大西部山杨比半个世纪前提早了26d发芽[4]。

1959-1993年间北美地区春季的生物物候提早了6d[5]。

从表面来看,增温可使植物生长期延长,利于增大生物量,植物发育生长速率加快,植物成熟过程提早,生长期反而缩短,生物量减少。

这说明小气候的作用。

环境条件诱发土壤结构变化,植被的种群结构也随之改变,甚至出现演替的过程,全球变暖不仅对植物的生物生产力影响较大,而且对植被类型的演替有着不可忽视的作用[6]。

据徐振锋等研究,增温效应使岷江冷杉芽开放显著提前,早出叶可能有利于物种资源利用,因为随着叶片展开,通常净光合速率随之增加,直到叶子完全展开,光合速率能力达到最高峰。

而早出叶也可能加大植物叶片遭受昆虫等小型动物取食的可能性。

其次,物种与环境之间的关系是经过长时间自然选择而形成的,因此植物提前展叶或开花,会加大植物叶或花遭受春季霜冻的可能性。

增温对糙皮桦芽开放时间影响不明显,而其落叶时间却显著推后,使得叶寿命显著延长。

过去一个多世纪,全球平均温度已经增加了0.6士0.2℃,且据模型预测,到本世纪末全球表面温度可能会增加1.8-4.0℃[2],高纬度高海拔地区对温度升高的响应可能会更为敏感而迅速。

温度控制生态系统中许多生物和化学反应速率,且温度几乎影响着所有生物学过程,植物物候也不例外。

温度的升高直接影响着植物的物候。

在温度增加的情况下,植物春季芽的展开提前,花期提前,秋季植物芽的休眠推后或无影响。

增温对植物物候影响可能因物种和处理时间(短期/长期)而异。

Henry和Molau在ITEX站点利用OTC控制环境温度,研究其对高寒植物物候的影响,结果发现物种的物候期发生了显著的变化,但植物物候对增温的短期反应只是个体特征,不能反映一般性的格局和强度。

Dunne等利用辐射加热器控制环境温度研究了气候变化对11种亚高山灌丛和草本花期的可能影响,结果表明:各物种花期对增温的反应有所不同,他们认为花期对全球变暖的这种短期响应可能导致种间关系发生变化。

Suzuki和Kudo利用开顶式同化箱法控制环境温度研究了对日本北部Taisctsu山脉高山极地植物物候的影响,结果表明:实验初期,各观测物种的生长季延长,落叶期滞后,而在实验进行到第三个生长季时,只有笃斯越橘(Vaccinium uliginosum)提前发芽,而其它物种(叶杜香,Ledum palustre;北极果,Arctous alpinus;和岩高兰,Empetrum nigrum)则表现不明显。

植物物候对温度升高的响应方式可能在不同功能群间存在一定的差异。

Binings认为温度升高对不同物种的影响不同,但对同一功能群影响可能是相似的,因为同一功能群其生理特性、生殖结构和叶形态特征都相对一致。

chapin等将极地及高山物种分为木本(落叶型和常绿型)草本(禾本类、非禾本类和莎草类)。

Aift等通过meta-analysis方法对国际冻原计划(ITEX)13个站点短期(1-4y)主要物候现象(展叶、始花和休眠)观测结果进行综合定量分析,结果表明:展叶对模拟增温的响应在不同功能群间存在显著的差异,而花期和休眠的差异性较小。

同样Henry和Molau通过对国际冻原计划(rrEx)6个站点研究结果进行归纳发现,不同功能群物候对温度升高的响应存在明显的差异,且响应的敏感程度依次表现为非禾本草本类>禾本类>落叶型灌丛>常绿型灌丛。

植物物候对模拟增温的响应是否存在区域间的差异?Arft等对国际冻原计划(ITEX)13个站点短期(l-4y)研究结果统计分析表明,展叶和始花在区域间没有明显的差异,但秋季叶的枯萎则差异显著(温度升高使高山植物枯萎期推迟了,而对极地物种枯萎时间影响并不明显。

同样,Henry和Molau认为除了个别物种,物候对模拟增温响应的方式和强度在研究的6个国际冻原计划(ITEX)站点间都是相似的。

1.2植物形态特征的影响温度作为重要的生态因子之一,对植物的生长和发育起着至关重要的作用。

温度变化主要通过影响植物的繁殖、叶片和高度等从而影响植物的生长和发育。

Havström,M等对南极不同地区植物进行研究发现:在温度较低的区域温度是植物生长的主要限制因子,而温度较高的地区营养成分则是植物生长的主要限制因子[7]。

矮嵩草分蘖数的生长与地温密切相关,而且地温大约在9.8℃时有利于矮嵩草分克隆繁殖(分蘖数增加),如果温度继续降低或增加都不利于矮嵩草的克隆繁殖(分蘖数减少)[8]。

如果在增温的同时增加营养,E.vaginatum的分蘖数增加显著;在单一因素控制时分蘖数增加不显著[9]。

温度变化往往是通过影响植物根温来影响植物的生长和发育,有关研究发现,地温变化1℃就能引起植物生长和养分吸收的明显变化[10],而叶片生长对根温的反应最为明显[11]。

生长过程和生物量是生态系统重要的特征,也是评价生态系统的重要指标。

全球变暖可能改变植物的生长特性,而且可能促进植物细胞分裂和生长,从而可以增加生物量。

因此大量的控制实验用于研究植物生长对气候变化的响应,国内外主要表现为:Suzuki﹠Kudo用OTC模拟气候变暖研究其对日本北部高山植物生长特征的影响,实验初期,叶的面积和大小变化不明显,但年萌发叶的数量增加,而三年模拟增温后,所有常绿灌丛芽的生长量较大,而落叶灌丛表现不明显;同样,G.R.egory等通过转移积雪的方法提高土壤温度,研究其对阿拉斯加草本植物的影响,结果发现:叶片大小和萌发数量不受增温的影响;Arft等通过ITEX模拟增温效应的方法,研究了4年间极地高山植物生长的反应,结果发现:在实验初生长量达到高峰,草本植物生长状况较木本受增温影响更大;Jagerbrand等对极地附近苔鲜的研究发现:短期增温效应并不能明显改变苔鲜种丰富度和生长状况;Press等用模拟增温来研究其对瑞典亚极地矮灌丛的影响,发现:模拟增温使总生物量增加了16%,地衣受温度影响十分明显,地衣生物量增加了56%,且冠层高度明显增加;同样,Chapin等对阿拉斯加Toolik湖附近苔原研究发现,模拟增温使灌丛的生物量增加;但Parsons等研究了两个生长季里4种亚极地低矮灌从对模拟环境变化的响应,结果发现:地上生物量变化不明显;Naoya等利用OTC模拟气候升温研究其对高山植物生长和生物量的影响,结果表明:芽的生长和生物量对模拟增温的响应在不同物种间存在明显的差异,但增温使两种常绿灌丛生长和生物量都有明显的增加。

相关主题