第5章1、2矩形谐振腔
一般说来,用导体边界构成的空腔或低损耗介质块都可以作为微波谐 振腔。 (有什么区别?)
微波频段常用的谐振腔按几何形状分类有:矩形腔、圆柱腔、同轴腔、 开放式谐振腔等;按所用材料分类有:金属腔,介质腔以及复合型腔等。
2016/4/15 2
第五章 微波谐振腔
5.1 简介
2a
圆波导
2a
同轴线
2b
在圆波导两端用导体短路可构成 微波圆柱谐振腔。
(5-2)
(1) 由边界条件 Ex(x,y,z = 0, t) 0 可得:D' = D' = D'
(2) 由边界条件 Ex(x,y,z = l, t) 0 ,和 D' = D' = D' 可得: = p / l
(
(p = 1,2,3, … 是否可取零待定)
m 2 n 2 m 2 n 2 p 2 ) ( ) 2 ( ) ( ) ( ) 2 a b a b l
D = 4 mm, h = 3.5 mm f0 = 12 GHz,Ku 波段
在同轴线两端用抗流活塞或低通滤波 器短路可构成微波同轴谐振腔。
D = 11 mm,h = 8 mm f0 = 4.2 GHz ,C 波段
2016/4/15 3
第五章 微波谐振腔
5.1 简介
微带线耦合回路构成的谐振腔。
0 = 2d YIG 小球与耦合回路构成的谐振腔 。 H0(Oe) = f (MHz) /2.8 2d
(2 - 34d) (2 - 34e) (2 - 34f)
2016/4/15
12
第五章 微波谐振腔
5.2 矩形谐振腔
a、可以利用 x 方向电场的表达式
已知,谐振腔中必然存在正、反两个方向的电磁波,将正、反两个方 向的电磁波叠加就可以得到矩形谐振腔中 x 方向电场的一般形式为:
H z ( x, y, z, t ) D' {( m 2 n 2 m n ) ( ) }cos( x)cos( y)cos(t z ) a b a b n m n E x ( x, y, z, t ) D' ( )cos( x) sin ( y ) sin (t z ) b a b m m n E y ( x, y, z, t ) D' ( ) sin ( x)cos( y ) sin (t z ) a a b
2 m 2 n 2 ( ) ( ) (c ) mn a b (2 - 35a)
(2 - 34c)
(2 - 34d) (2 - 34e)
(kc ) mn
(
m 2 n 2 ) ( ) 2 2 a b
E x ( x, y, z, t ) D' (
n m n n m n )cos( x) sin ( y) sin (t z ) D' ( )cos( x) sin ( y) sin (t z ) b a b b a b n m n )cos( x) sin ( y) D' sin (t z ) D' sin (t z ) b a b
15
第五章 微波谐振腔
(kc ) mn 2 m 2 n 2 ( ) ( ) (c ) mn a b
b2
a1
2016/4/15 4
第五章 微波谐振腔
5.1 简介
2a
圆波导
两块相对放置的导体板也可构成微波谐 振腔,如果导体板的尺度远大于微波波长。 这种腔体被称为开放式微波谐振腔。
r
r
当电磁波波长较短时,很容易实现这种 谐振腔。在光学系统中,这种谐振腔称为 FP 腔。 优点是品质因数高(选频特性好)。
E x ( x, y, z, t ) (
2016/4/15
13
第五章 微波谐振腔
(kc ) mn 2 m 2 n 2 ( ) ( ) (c ) mn a b
5.2 矩形谐振腔
(2 - 35a)
E x ( x, y, z, t ) (
n m n )cos( x) sin ( y) D' sin (t z ) D' sin (t z ) b a b
腔体几何参数确定后,微波频率不能任选。
2016/4/15 14
第五章 微波谐振腔
5.2 矩形谐振腔
b、也可以利用 y 方向电场的表达式
已知,谐振腔中必然存在正、反两个方向的电磁波,将正、反两个方 向的电磁波叠加就可以得到矩形谐振腔中 y 方向电场的一般形式为:
H z ( x, y, z, t ) D' {( m 2 n 2 m n ) ( ) }cos( x)cos( y)cos(t z ) a b a b n m n E x ( x, y, z, t ) D' ( )cos( x) sin ( y ) sin (t z ) b a b m m n E y ( x, y, z, t ) D' ( ) sin ( x)cos( y ) sin (t z ) a a b
2016/4/15 11
第五章 微波谐振腔
1、矩形腔中 TE 模的解。
5.2 矩形谐振腔
根据 2.3 小节,已知矩形金属波导中 TE 波的解和相应的本征值 kc 。 将导体表面边界条件 Et(z = 0,z = l) = 0 或 Hn(z = 0,z = l) = 0 代 入式 (2-34) 中的 Ex,Ey 或 Hz 的表达式中,可以导出谐振腔中电磁场 TE 模 的解。 有 5 个方程可选,只有 2 个待定常数(D、)。因此,可选最简单的 条件方程。即短路面上电场的切向分量方程或磁场的法线分量方程。 m,n 的取值仍然按第二章中的规则,即电场和磁场的纵向分量不能同时为零。
5
2016/4/15
第五章 微波谐振腔
5.1 简介
两块相对放置的导体板也可构成微波谐 振腔,如果导体板的尺度远大于微波波长。 r r
这种腔体被称为开放式微波谐振腔。
这两种谐振腔在毫米波、远 红外和光波频段有广泛用途 。 利用介质材料参数的周期性 或非周期性变化,可以构成所谓 分布反馈谐振腔。
2016/4/15
(kc ) mn 2 m 2 n 2 ( ) ( ) (c ) mn a b (2 - 35a)
(2 - 34c)
(2 - 34d) (2 - 34e)
(
m 2 n 2 ) ( ) 2 2 a b
E y ( x, y, z, t ) D' (
m m n m m n ) sin( x)cos ( y) sin(t z ) D' ( ) sin( x)cos ( y) sin(t z ) a a b a a b
E y ( x, y, z, t ) (
2016/4/15
m m n ) sin ( x)cos( y) D' sin (t z ) D' sin (t z ) a a b
6
第五章 微波谐振腔
5.1 简介
在研究谐振腔时,我们关心的主要参数有: (1) 谐振频率 f0,谐振腔只能储存与其谐振频率相同的电磁波能量。 (2) 固有品质因数 Q0,谐振腔储能和谐振腔本身耗能的情况。 (3) 有载品质因数 QL,谐振腔储能和谐振腔及其耦合装置的耗能情况。 (4) 特性阻抗 0,谐振腔耦合口上的电场强度。 微波谐振腔在几何结构上与微波传输线类似,在储能和选频功能方面 与低频 LC 电路类似。
2016/4/15
7
第五章 微波谐振腔
微波谐振腔 与 微波传输线
5.1 简介
微波谐振腔与微波传输线的相同之处是它们都具有相同类型的横向边 界条件,因而具有相同类型的横向电磁场分布。 各工作模式只有在与激励源之间满足奇偶禁戒规则的条件下才能被激 励。 微波谐振腔与微波传输线的区别是:对于传输线而言,只要它的某个 模式与激励源之间满足奇偶禁戒规则,该模式就能被激励(不一定能传输)。 如果激励源的频率高于该模式的截止频率时,该模式就成为传输模式。 如果激励源的频率低于该模式的截止频率时,该模式就成为截止模式。 对于微波谐振腔而言,由于它比传输线多了纵向边界条件,要想在微 波谐振腔中激励起某个模式,激励源不但要与该模式满足奇偶禁戒规则, 而且激励源的频率必须等于该模式的谐振频率。
1、谐振频率 2、品质因数 3、模式特征、激励方式
2016/4/15
9
第五章 微波谐振腔
5.2 矩形谐振腔
矩形谐振腔具有与矩形波导完全相同的横向边界条件,它们的区别仅 在于矩形谐振腔在 z 方向上也存在短路边界条件。因此,求解矩形谐振腔 谐振频率和工作模式的方法与求解矩形波导截止频率和工作模式的方法基 本相同。
2016/4/15
1
第五章 微波谐振腔
5.1 简介
微波谐振腔是微波系统中经常用到的重要元件。有源微波部件往往都 需要用微波谐振腔实现能量交换。
微波谐振腔在其他领域中也有广泛的用途。例如,电子直线加速器的 主体是工作在 TM010 模式的圆柱腔,微波炉是一个工作在多模状态的矩形 谐振腔等等。 微波谐振腔能够将特定频率的电磁波限制在一定的几何空间内。也就 是说:谐振腔具有存储电磁能量和频率选择的能力。凡是具有这两个特征 的元件都可称作微波谐振腔。
m m n ) sin ( x)cos( y ) sin (t z ) a a b n m n H y ( x, y, z , t ) D' ( )cos( x) sin ( y ) sin (t z ) b a b m 2 n 2 m n H z ( x, y, z , t ) D' {( ) ( ) }cos( x)cos( y )cos(t z ) a b a b n m n E x ( x, y, z , t ) D' ( )cos( x) sin ( y ) sin (t z ) b a b m m n E y ( x, y, z, t ) D' ( ) sin ( x)cos( y ) sin (t z ) a a b E z ( x, y , z , t ) 0 H x ( x, y , z , t ) D ' ( (2 - 34a) (2 - 34b) (2 - 34c)