当前位置:
文档之家› DesignExpert响应面分析实验设计案例分析和CCD设计详细教程
DesignExpert响应面分析实验设计案例分析和CCD设计详细教程
CCD工作原理
一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少。取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中。移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理。由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高。
图12A及B对ACE抑制率影响的响应面
图13A与C对ACE抑制率影响的等高线
图14A及C对ACE抑制率影响的响应面
图15A与D对ACE抑制率影响的等高线
图16A及D对ACE抑制率影响的响应面
图17B与C对ACE抑制率影响的等高线
图18B及C对ACE抑制率影响的响应面
图19B与D对ACE抑制率影响的等高线
要了解CCD的原理,必须对半导体的基本知识有一些了解,可参见附录。
一.CCD的MOS结构及存贮电荷原理
CCD的基本单元是MOS电容器,这种电容器能存贮电荷,其结构如图1所示。以P型硅为例,在P型硅衬底上通过氧化在表面形成SiO2层,然后在SiO2 上淀积一层金属为栅极,P型硅里的多数载流子是带正电荷的空穴,少数载流子是带负电荷的电子,当金属电极上施加正电压时,其电场能够透过SiO2绝缘层对这些载流子进行排斥或吸引。于是带正电的空穴被排斥到远离电极处,剩下的带负电的少数载流子在紧靠SiO2层形成负电荷层(耗尽层),电子一旦进入由于电场作用就不能复出,故又称为电子势阱。
CCD的信号电荷读出方法有两种:输出二极管电流法和浮置栅MOS放大器电压法.
图5(a)是在线列阵未端衬底上扩散形成输出二极管,当二极管加反向偏置时,在PN结区产生耗尽层。当信号电荷通过输出栅OG转移到二极管耗尽区时,将作为二极管的少数载流子而形成反向电流输出。输出电流的大小与信息电荷大小成正比,并通过负载电阻RL变为信号电压U0输出.
利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。
2.1数据的输入
图1
2.2Box-Behnken响应面试验设计与结果
图2
2.3选择模型
图3
2.4 方差分析
图4
在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。由图4知其自变量一次项A,B,D,二次项AC,A2,B2,C2,D2显著(p<0.05)。失拟项用来表示所用模型与实验拟合的程度,即二者差异的程度。本例P值为0.0861>0.05,对模型是有利的,无失拟因素存在,因此可用该回归方程代替试验真实点对实验结果进行分析。
当器件受到光照时(光可从各电极的缝隙间经过SiO2层射入,或经衬底的薄P型硅射入),光子的能量被半导体吸收,产生电子-空穴对,这时出现的电子被吸引存贮在势阱中,这些电子是可以传导的。光越强,势阱中收集的电子越多,光弱则反之,这样就把光的强弱变成电荷的数量,实现了光与电的转换,而势阱中收集的电子处于存贮状态即使停止光照一定时间内也不会损失,这就实现了对光照的记忆。
食品科学研究中实验设计的案例分析—响应面法优化超声波辅助来自法制备燕麦ACE抑制肽的工艺研究
摘要:选择对ACE抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE抑制肽的抑制率87.36%。与参考文献SAS软件处理的结果中比较差异很小。
3. Design-Expert处理结果与文献比较
Design-Expert在响应曲面、等高线图以及回归方程处理的结果与文献中SAS软件处理的结果进行比较:
表二Design-Expert与文献SAS处理结果比较
优化条件软件
超声波处理时间
超声波功率
超声波水浴温度
酶解时间
ACE 抑制率
文献(SAS)
28.40min
图5(c)为输出级原理电路,由于采用硅栅工艺制作浮置栅输出管,可使栅极等效电容C很小。如果电荷包的电荷为Q,A点等效电容为C,输出电压为U0,A点的电位变化△U=- ,因而可以得到比较大的输出信号,起到放大器的作用,称为浮置栅MOS放大器电压法。
图7为TCD 1206UD(注:这里的CCD型号与我们实验中用的稍有不同,但原理都一样)的结构示意图,它为一双通道二相驱动的线阵CCD器件,共有2160个光敏元。奇数光敏元与其中一列移位寄存器相连,偶数光敏元与另一列移位寄存器相连。移位寄存器的像元数量与光敏光相同,相邻像元中的一个与光敏元相连,并接 脉冲,另一个不直接与光敏元连接,接 脉冲,如图4所示。
190.08W
55.05℃
2.25h
87.50%
Design-Expert
28.42min
190.04W
55.05℃
2.24h
87.36%
根据两个软件处理结果的数据比较可知各因素最佳工艺条件差异小。
4.案例实验设计和统计分析过程评价
案例中通过Design-Expert软件操作和截下重要的步骤的数据处理的过程的图片,这样可以方便分析和描述,Design-Expert软件能够用清晰和直观的图表表示结果,利于分析,并能够很好的对照和检验文献的数据处理的结果存在的问题和差异。Design-Expert在响应面分析有很强大的功能,能够与文献中SAS软件计算的数据进行比较,SAS软件在计算最大响应面值优于Design-Expert软件,从“ACE抑制率”的比较可知,但差异不大。所以文献中数据没有问题,从分析的结果可知。
图20B及D对ACE抑制率影响的响应面
图21C与D对ACE抑制率影响的等高线
图22C及D对ACE抑制率影响的响应面
2.8优化最佳因素
图23
图24
图25
图26
图27
2.9最佳因数和最大响应面值
图28
利用响应面设计实验,运用根据Box-Benhnken的中心组合试验设计原理,选择对ACE抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),做四因素三水平的响应面分析试验。最终得到最佳工艺:超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h、ACE抑制率87.36%。
Y(%)=-146.18542+2.23483X1+0.095966X2+6.40533X3+14.56083X4-0.016775X12+5.68182x10-6X1X2-0.023300X1X3+0.00025X1X4-2.49225x10-4X22-4.59229x10-7X2X3-
0.000625X2X4-0.052150X32-0.0005X3X4-3.21125X42
2.6数据点的分布图
图7
图8
图9
从图7-9可知道,数据的分布的线性明显,没有出现异常的数据点。
图10实验实际值与方程预测值
2.7等高线和三维响应曲面图分析
做出响应曲面,分析超声波处理时间(A)、超声波功率(B)、超声波水浴温度(C)和酶解时间(D)对ACE抑制率的影响情况,结果见图11~22。
图11A与B对ACE抑制率影响的等高线
图5(b)是一种浮置栅MOS放大器读取信息电荷的方法.MOS放大器实际是一个源极跟随器,其栅极由浮置扩散结收集到的信号电荷控制,所以源极输出随信号电荷变化.为了接收下一个“电荷包”的到来,必须将浮置栅的电压恢复到初始状态,故在MOS输出管栅极上加一个MOS复位管。在复位管栅极上加复位脉冲φR,使复位管开启,将信号电荷抽走,使浮置扩散结复位.
图5
由图5可知:校正决定系数R2(adj)(0.9788>0.80)和变异系数(CV)为0.51%,说明该模型只有2.12%的变异,能由该模型解释。进一步说明模型拟合优度较好,可用来对超声波辅助酶法制备燕麦ACE抑制肽的工艺研究进行初步分析和预测。
2.5多元二次响应面回归分析
图6
通过Design-Expert软件进行二次响应面回归分析,得到如下多元二次响应面回归模型:
总之,上述结构实质上是个微小的MOS电容,用它构成象素,既可“感光”又可留下“潜影”,感光作用是靠光强产生的电子电荷积累,潜影是各个象素留在各个电容里的电荷不等而形成的,若能设法把各个电容里的电荷依次传送到输出端,再组成行和帧并经过“显影”就实现了图象的传递。
二.电荷的转移与传输
CCD的移位寄存器是一列排列紧密的MOS电容器,它的表面由不透光的铝层覆盖,以实现光屏蔽。由上面讨论可知,MOS电容器上的电压愈高,产生的势阱愈深,当外加电压一定,势阱深度随阱中的电荷量增加而线性减小。利用这一特性,通过控制相邻MOS电容器栅极电压高低来调节势阱深浅。制造时将MOS电容紧密排列,使相邻的MOS电容势阱相互“沟通”。认为相邻MOS电容两电极之间的间隙足够小(目前工艺可做到0.2μm),在信号电荷自感生电场的库仑力推动下,就可使信号电荷由浅处流向深处,实现信号电荷转移。
2.二相CCD传输原理
CCD中的电荷定向转移是靠势阱的非对称性实现的.在三相CCD 中是靠时钟脉冲的时序控制,来形成非对称势阱.但采用不对称的电极结构也可以引进不对称势势阱,从而变成二相驱动的CCD.目前实用CCD中多采用二相结构.实现二相驱动的方案有:
阶梯氧化层电极
阶梯氧化层电极结构参见图3。由图可见,此结构中将一个电极分成二部分,其左边部分电极下的氧化层比右边的厚,则在同一电压下,左边电极下的位阱浅,自动起到了阻挡信号倒流的作用.
图8为各路脉冲的波形图。
SH信号加在转移栅上。当SH为高电平时,正值φ1为高电平。移位寄存器中的所有φ1电极下均形成深势阱,同时SH的高电平使光敏元MOS电容存储势阱与φ1电极下的深势阱沟通,光敏MOS电容中的信号电荷包迅速向上下两列移位寄存器中与φ1连接的MOS电容转移。SH为低电平时,光敏元与移位寄存器的连接中断,此时光敏元在外界光照作用下产生与光照对应的电荷,而移位寄存器中的信号电荷在φ1φ2时钟脉冲作用下由右向左转移,在输出端将上下两列信号按原光敏元采集的顺序合为一列后,由输出端输出。