目录第一章原子的位形 (1)第二章原子的量子态:波尔模型 (7)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋 (16)第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论 (18)第一章 原子的位形 1-1)解:α粒子与电子碰撞,能量守恒,动量守恒,故有:⎪⎩⎪⎨⎧+'='+=e e v m v M v M v M mv Mv 222212121 ⎪⎪⎩⎪⎪⎨⎧='-='-⇒222e e v M m v v v Mm v ve v m p=∆e p=mv p=mv ∴∆∆,其大小: (1) 222(')(')(')e m v v v v v v v M-≈+-=近似认为:(');'p M v v v v ∆≈-≈22e m v v v M∴⋅∆=有 212e p p Mmv ⋅∆=亦即: (2)(1)2/(2)得22422210e e m v m p Mmv M -∆===p 亦即:()ptg rad pθθ∆≈=-4~10 1-2) 解:① 22a b ctg Eθπε=228e ;库仑散射因子:a=4)2)(4(420202E Z e E Ze a πεπε==22279()() 1.44()45.545eZ a fmMev fm E Mev πε⨯=== 当901θθ=︒=时,ctg2122.752b a fm ∴== 亦即:1522.7510b m -=⨯② 解:金的原子量为197A =;密度:731.8910/g m ρ=⨯ 依公式,λ射α粒子被散射到θ方向,d Ω立体角的内的几率:nt d a dP 2sin16)(42θθΩ=(1)式中,n 为原子核数密度,()AA m n n N ρ∴=⋅= 即:A V n Aρ=(2)由(1)式得:在90º→180 º范围内找到α粒子得几率为:(θP 18022490a nt 2sin ()164sin 2d a nt πθθπρθθ︒︒=⋅=⎰将所有数据代入得(θP 5()9.410ρθ-=⨯这就是α粒子被散射到大于90º范围的粒子数占全部粒子数得百分比。
1-3)解:4.5;79;,E Mev Z Li Z ===对于全核对于金74.5;79;,3;E Mev ZLi Z ===对于全核对于 )2)(4(420202E Z e E Ze a r m πεπε===当Z =79时2791.4450.564.5m r fm Mev fm Mev⨯=⋅⨯=当Z =3时, 1.92;m r fm = 但此时M 并不远大于m ,c l m E E ⋅≠21,(1)2c c M m E uv E a a M m M==∴=++4(1) 3.027m c r a a fm ==+=1-4)解:① fm E Ze E Ze r m 7)2)(4(420202===πεπε将Z =79代入解得:E=16.25Mev② 对于铝,Z =13,代入上公式解得:2e 134fm=()4Eπε E=4.68Mev以上结果是假定原子核不动时得到的,因此可视为理论系的结果,转换到实验室中有:(1)l c mE E M=+ 对于① 1(1)16.33197l c E E Mev =+= ② 1(1) 4.927l c E E Mev =+=可见,当M>>m 时,l c E E ≈,否则,l c E E ≠ 1-5)解:在θ方向d Ω立方角内找到电子的几率为:221241()44sin 2Z Z e dN d nt N E θπεΩ=⋅注意到:;A A N A nt t nt t N A ρρ==24()4sin 2A N dN a d t n N A ρθΩ∴==21279() 1.44113.764 1.0Z Z e a fmMev fm E Mevπε=⋅=⋅=2221.5 1.51010s d r -∆Ω===⨯ 24()4sin 2AN dN a d t n N A ρθΩ∴==2313232646.021011410 1.5101.510()8.9101974sin 30οη----⨯⨯⨯∴=⨯⨯⨯=⨯2152********⎪⎪⎭⎫ ⎝⎛⨯⋅--23 1-6)解:223cos2()()444sin 4sin 22a d a dN Nnt Nnt d θπθθθΩ==⋅ ∴散射角大于θ得粒子数为:180'N dNοθ=⎰依题意得:1803606018090390sin 2sin 321sin2sin 2d N Nd οοοοοοθθθθθθ>>==⎰⎰,即为所求 1-7)解21016104242sin 2cos42sin 2cos42sin2cos 241)180(02323221803218032180322212018000000θπρθπρθθθπρθθθπρθθθπεπθθθθθθctg N Aa ctg a AN d a A N d a AtN d E e Z Z nt N dN P A m A m A m A --⨯=⇒⨯====⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==≤≤⎰⎰⎰⎰依题:sr b sr m tg a d d c /24/102430sin 101002.610241041812sin 14)(2280402232342=⨯=⨯⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛=Ω=----πθσθσ 1-8)解:在实验室系中,截面与偏角的关系为(见课本29页)111max 2221211221sin ()9011sin 0(1sin )1sin 0L L L Lm m mm m m m mm m m m οοθθθθ∴=≥∴=≥-⎧+≥⎪⎪⎨⎪≤⎪⎩--① 由上面的表达式可见:为了使()L L σθ存在,必须:2121(sin )0L m m θ-≥ 即:11221sin (1sin )0L L m m m m θθ+≥()- 亦即:12121sin 01sin 0L L m m m m θθ⎧+≥⎪⎪⎨⎪≥⎪⎩- 或12121sin 01sin 0L Lm m m m θθ⎧+≤⎪⎪⎨⎪≤⎪⎩-考虑到:180L οθ≤ sin 0L θ≥ ∴第二组方程无解 第一组方程的解为:121sin 1L m m θ≥≥- 可是,12sin L m m θ的最大值为1,即:12sin L m m θ= ② 1m 为α粒子,2m 为静止的He 核,则121m m =, max ()90L θ∴=︒1-9)解:根据1-7)的计算,靶核将入射粒子散射到大于θ的散射几率是24)(22θπθctg a ntP =〉当靶中含有两种不同的原子时,则散射几率为120.70.3ηηη=+将数据代入得:1323223122223113.142(1 1.4410) 1.510 6.02210154(1.0)7949(0.700.30) 5.810197108Mev cm g cm mol ctg Mev g mol g molη-------=⨯⨯⋅⨯⨯⨯⋅⨯⨯︒⨯⨯⨯+⨯=⨯⋅⋅1-10)解:① 金核的质量远大于质子质量,所以,忽略金核的反冲,入射粒子被靶核散时则:θθθ→-∆之间得几率可用的几率可用下式求出:22442sin 2sin ()()44sinsin22a t ant A πθθρπθθηθθ∆∆==212179 1.4494.84 1.2R Z Z e Mev fm a fm E Mevπε⨯⨯⋅===由于12θθ≈,可近似地将散射角视为:1259616022θθθ+︒+︒===︒;61590.0349180rad θπ︒-︒∆==︒将各量代入得:2413234419.32 1.51094.8102sin 600.03496.0210 1.51101974sin 30πη---⎛⎫⨯⨯⨯︒⨯=⨯⨯⨯⨯=⨯ ⎪︒⎝⎭单位时间内入射的粒子数为:910195.01013.125101.6010Q I t N e e --⋅⨯⨯====⨯⨯(个) ∴T 时间内入射质子被散时到5961︒-︒之间得数目为:10493.12510 1.5110605 1.410N N T η-∆==⨯⨯⨯⨯⨯=⨯(个)② 入射粒子被散时大于θ的几率为:222231.88104242Aa ta ntctgN ctg Aπθρπθη-===⨯103103.12510 1.8810605 1.810N N T η-∴∆==⨯⨯⨯⨯⨯=⨯ (个)③ 大于10︒的几率为:222108.171042a ntctg θπθη=-︒==⨯∴大于10︒的原子数为:10211' 3.125108.17106057.6610N -∆=⨯⨯⨯⨯⨯=⨯(个)∴小于10︒的原子数为:10123.125101605'8.610N N ∆=⨯⨯⨯⨯-∆=⨯(个)注意:大于0ο的几率:1η=∴大于0ο的原子数为:103.12510605NT =⨯⨯⨯第二章 原子的量子态:波尔模型 2-1)解:k hv E W =+① 0, 1.9k E hv e =∴=有W h =0νHz seV eV h W 14150106.4101357.49.1⨯=⋅⨯==-ν nm eVeVnm W hc c6.6529.11024.1300=⋅⨯===νλ② nmhc eVeV nm W E hc ck 7.364)9.15.1(1024.13=+⋅⨯=+==νλ2-2)解: 22111;;()n n n V n c Zr a v Z Z E E Z n n nα==⋅== ① 对于H :111210.53;4 2.12r na A r a A ︒︒====111210.53;4 2.12r a n a A r a A ︒︒===== 616112112.1910(); 1.110()2v c m s v v m s α--==⨯⋅==⨯⋅对于He +:Z=2112161611110.265;2 1.0622 4.3810(); 2.1910()r a A r a A v c m s v c m s αα︒︒--======⨯⋅==⨯⋅ 对于Li +:Z =31121616111140.177;0.7073333 6.5710(); 3.2910()2r a A r a A v c m s v c m s αα︒︒--======⨯⋅==⨯⋅② 结合能=21()n A ZE E E n=-≡13.6;413.654.4;122.4H He Li E ev E ev E ev +++==⨯==③ 由基态到第一激发态所需的激发能:22221111113()()(1)2144Z Z E E E Z E E Z ∆=-=-=-对于H :31312.410()(13.6)10.2;1216410.2H H hc ev E ev A A E ev ︒︒⨯∆=-⨯-====∆eV eV E hc He2.10104.123⨯=∆=+λ3()13.6440.8;303.94H He hc E ev A Eλ+︒∆=⨯⨯===∆1312.410()(13.6)10.2;1216410.2H H hc ev E ev A A E ev λ︒︒⨯∆=-⨯-====∆ 对于He +:13()13.6440.8;303.94H Hehc E ev A Eλ+︒∆=⨯⨯===∆9.303=∆=+E hc He 3()13.6440.8;303.94H He hc E ev A E λ+︒∆=⨯⨯===∆ 对于Li ++:13()13.6991.8;135.14H Li hc E ev A E λ++︒∆=⨯⨯===∆1.135=∆=+E hc He 3()13.6440.8;303.94H Hehc E ev A E λ+︒∆=⨯⨯==∆ 2-3)解:所谓非弹性碰撞,即把Li ++打到某一激发态, 而Li ++最小得激发能为()eV E E E E Li 8.91)323(22211212=-=-=∆++∴这就是碰撞电子应具有的最小动能。