当前位置:文档之家› 构造函数解导数综合题

构造函数解导数综合题

构造辅助函数求解导数问题对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧.技法一:“比较法”构造函数[典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.[解] (1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2,令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)单调递减;当x>ln 2时,f′(x)>0,f(x)单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.[方法点拨]在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练]已知函数f (x )=xex ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1)处的切线,求证:f (x )≤g (x ).证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0).令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)=1-xe x-1-x 0e 0x=?1-x ?e 0x -?1-x 0?e xe 0+x x.设φ(x )=(1-x )e 0x -(1-x 0)e x , 则φ′(x )=-e 0x -(1-x 0)e x ,∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,又φ(x 0)=0,∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ).技法二:“拆分法”构造函数[典例] 设函数f (x )=ae x ln x +bex -1x,曲线y =f (x )在点(1,f (1))处的切线为y =e (x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.[解] (1)f ′(x )=ae x ⎝ ⎛⎭⎪⎫ln x +1x +be x -1?x -1?x 2(x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),所以⎩⎨⎧f ?1?=2,f ′?1?=e ,即⎩⎨⎧b =2,ae =e ,解得⎩⎨⎧a =1,b =2.(2)证明:由(1)知f (x )=e x ln x +2ex -1x (x >0),从而f (x )>1等价于x ln x >xe -x -2e. 构造函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎪⎫0,1e 时,g ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0, 故g (x )在⎝⎛⎭⎪⎫0,1e 上单调递减, 在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .构造函数h (x )=xe -x -2e,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0;故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e.综上,当x >0时,g (x )>h (x ),即f (x )>1. [方法点拨]对于第(2)问“ae xln x +be x -1x>1”的证明,若直接构造函数h (x )=ae xln x +be x -1x-1,求导以后不易分析,因此并不宜对其整体进行构造函数,而应先将不等式“ae x ln x +be x -1x>1”合理拆分为“x ln x >xe -x-2e”,再分别对左右两边构造函数,进而达到证明原不等式的目的.[对点演练]已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln xx -1.解:(1)f ′(x )=a ⎝⎛⎭⎪⎫x +1x -ln x ?x +1?2-bx2(x >0).由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎨⎧f ?1?=1,f ′?1?=-12,即⎩⎨⎧b =1,a 2-b =-12.解得⎩⎨⎧a =1,b =1.(2)证明:由(1)知f (x )=ln x x +1+1x(x >0), 所以f (x )-ln x x -1=11-x 2⎝ ⎛⎭⎪⎫2ln x -x 2-1x . 考虑函数h (x )=2ln x -x 2-1x(x >0),则h ′(x )=2x -2x 2-?x 2-1?x 2=-?x -1?2x 2.所以当x ≠1时,h ′(x )<0.而h (1)=0, 故当x ∈(0,1)时,h (x )>0,可得11-x2h (x )>0;当x∈(1,+∞)时,h(x)<0,可得11-x2h(x)>0.从而当x>0,且x≠1时,f(x)-ln xx-1>0,即f(x)>ln x x-1.技法三:“换元法”构造函数[典例] 已知函数f(x)=ax2+x ln x(a∈R)的图象在点(1,f(1))处的切线与直线x+3y=0垂直.(1)求实数a的值;(2)求证:当n>m>0时,ln n-ln m>mn-nm.[解] (1)因为f(x)=ax2+x ln x,所以f′(x)=2ax+ln x+1,因为切线与直线x+3y=0垂直,所以切线的斜率为3,所以f′(1)=3,即2a+1=3,故a=1.(2)证明:要证ln n-ln m>mn-nm,即证ln nm>mn-nm,只需证lnnm-mn+nm>0.令nm=x,构造函数g(x)=ln x-1x+x(x≥1),则g′(x)=1x+1x2+1.因为x∈[1,+∞),所以g′(x)=1x+1x2+1>0,故g(x)在(1,+∞)上单调递增.由已知n>m>0,得nm>1,所以g ⎝ ⎛⎭⎪⎫n m >g (1)=0,即证得ln n m -m n +n m>0成立,所以命题得证. [方法点拨]对“待证不等式”等价变形为“ln n m -m n +nm >0”后,观察可知,对“n m”进行换元,变为“ln x -1x+x >0”,构造函数“g (x )=ln x -1x+x (x ≥1)”来证明不等式,可简化证明过程中的运算.[对点演练]已知函数f (x )=x 2ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t =f (s );(3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g ?t ?ln t <12. 解:(1)由已知,得f ′(x )=2x ln x +x =x (2ln x +1)(x >0), 令f ′(x )=0,得x =1e.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e ,单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞.(2)证明:当0<x≤1时,f(x)≤0,∵t>0,∴当0<x≤1时不存在t=f(s).令h(x)=f(x)-t,x∈[1,+∞).由(1)知,h(x)在区间(1,+∞)上单调递增.h(1)=-t<0,h(e t)=e2t ln e t-t=t(e2t-1)>0.故存在唯一的s∈(1,+∞),使得t=f(s)成立.(3)证明:因为s=g(t),由(2)知,t=f(s),且s>1,从而ln g?t?ln t=ln sln f?s?=ln sln?s2ln s?=ln s2ln s+ln?ln s?=u2u+ln u,其中u=ln s.要使25<ln g?t?ln t<12成立,只需0<ln u<u2.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾.所以s>e,即u>1,从而ln u>0成立.另一方面,令F(u)=ln u-u2,u>1,F′(u)=1u-12,令F′(u)=0,得u=2.当1<u<2时,F′(u)>0;当u>2时,F′(u)<0.故对u>1,F(u)≤F(2)<0,因此ln u<u2成立.综上,当t>e2时,有25<ln g?t?ln t<12.技法四:二次(甚至多次)构造函数[典例] (2017·广州综合测试)已知函数f (x )=e x +m-x 3,g (x )=ln(x+1)+2.(1)若曲线y =f (x )在点(0,f (0))处的切线斜率为1,求实数m 的值; (2)当m ≥1时,证明:f (x )>g (x )-x 3. [解] (1)因为f (x )=e x +m -x 3, 所以f ′(x )=e x +m -3x 2.因为曲线y =f (x )在点(0,f (0))处的切线斜率为1, 所以f ′(0)=e m =1,解得m =0.(2)证明:因为f (x )=e x +m -x 3,g (x )=ln(x +1)+2, 所以f (x )>g (x )-x 3等价于e x +m -ln(x +1)-2>0. 当m ≥1时,e x +m -ln(x +1)-2≥e x +1-ln(x +1)-2. 要证e x +m -ln(x +1)-2>0, 只需证明e x +1-ln(x +1)-2>0.设h (x )=e x +1-ln(x +1)-2,则h ′(x )=e x +1-1x +1. 设p (x )=e x +1-1x +1,则p ′(x )=e x +1+1?x +1?2>0, 所以函数p (x )=h ′(x )=e x +1-1x +1在(-1,+∞)上单调递增. 因为h ′⎝ ⎛⎭⎪⎫-12=e 12-2<0,h ′(0)=e -1>0,所以函数h ′(x )=ex +1-1x +1在(-1,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫-12,0. 因为h ′(x 0)=0,所以ex 0+1=1x 0+1, 即ln(x 0+1)=-(x 0+1).当x∈(-1,x0)时,h′(x)<0,当x∈(x0,+∞)时,h′(x)>0,所以当x=x0时,h(x)取得最小值h(x0),所以h(x)≥h(x0)=ex0+1-ln(x0+1)-2=1x0+1+(x0+1)-2>0.综上可知,当m≥1时,f(x)>g(x)-x3.[方法点拨]本题可先进行适当放缩,m≥1时,e x+m≥e x+1,再两次构造函数h(x),p(x).[对点演练](2016·合肥一模)已知函数f(x)=ex-x ln x,g(x)=e x-tx2+x,t ∈R,其中e为自然对数的底数.(1)求函数f(x)的图象在点(1,f(1))处的切线方程;(2)若g(x)≥f(x)对任意的x∈(0,+∞)恒成立,求t的取值范围.解:(1)由f(x)=ex-x ln x,知f′(x)=e-ln x-1,则f′(1)=e-1,而f(1)=e,则所求切线方程为y-e=(e-1)(x-1),即y=(e-1)x+1.(2)∵f(x)=ex-x ln x,g(x)=e x-tx2+x,t∈R,∴g(x)≥f(x)对任意的x∈(0,+∞)恒成立等价于e x-tx2+x-ex+x ln x≥0对任意的x∈(0,+∞)恒成立,即t≤e x+x-ex+x ln xx2对任意的x∈(0,+∞)恒成立.令F(x)=e x+x-ex+x ln xx2,则F′(x)=xe x+ex-2e x-x ln xx3=1x2⎝⎛⎭⎪⎫e x+e-2e xx-ln x,令G(x)=e x+e-2e xx-ln x,则G′(x)=e x-2?xe x-e x?x2-1x=e x?x-1?2+e x-xx2>0对任意的x∈(0,+∞)恒成立.∴G(x)=e x+e-2e xx-ln x在(0,+∞)上单调递增,且G(1)=0,∴当x∈(0,1)时,G(x)<0,当x∈(1,+∞)时,G(x)>0,即当x∈(0,1)时,F′(x)<0,当x∈(1,+∞)时,F′(x)>0,∴F(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴F(x)≥F(1)=1,∴t≤1,即t的取值范围是(-∞,1].。

相关主题