第五章第2节霍尔传感器介绍
(二) 霍尔元件
霍尔元件的外形如下图所示,它是由霍尔片、4根引 线和壳体组成。
1 2 1 1′ 2′ 1 H 2′ 1′
1
2
2
1 、1 ′—激励电极;2 、2 ′—霍尔电极
图 霍尔元件 (a) 外形结构示意图; (b) 图形符号
(三)输入电阻和输出电阻
激励电极间的电阻值称为输入电阻。霍尔电极输出电势对 电路外部来说相当于一个电压源,其电源内阻即为输出电阻。 以上电阻值是在磁感应强度为零,且环境温度在20℃±5℃时 所确定的。
霍尔传感器输出电压是交流的情况:
C1漏电流小,C2漏电流大,其差表现为偏移电压。
C1,C2漏电流相等
二、霍尔元件的误差及其补偿
由于制造工艺问题以及实际使用时所存在的各种影响 霍尔元件性能的因素,如元件安装不合理、环境温度变化 等,都会影响霍尔元件的转换精度,带来误差。
(一)霍尔元件的零位误差及其补偿
evB eU H / b
eIB / neb d eU H / b UH IB ned
霍尔电势UH与I、B的乘积成正比,而与d成反比。 于是可改写成:
UH
IB RH d
RH—霍尔系数
设 KH=RH / d
UH=KHIB
KH—霍尔器件的灵敏度系数。它与载流材料的物理性质 和几何尺寸有关,表示在单位磁感应强度和单位控制电流时 霍尔电势的大小。 若磁感应强度B的方向与霍尔器件的平面法线夹角为θ时, 霍尔电势应为:
c.差分放大
需要差分放大的原因: 霍尔元件的输出电压低,需要放大 去除同相电压,需要差分
u0 (
Ua
R4 2R )(1 2 )(U b U a ) R3 R1
R3
R4
R3
Ub
R4
A1、A2二个同相放大器组成差动式放大电路,输入信号加在 A1、A2的同相输入端,从而具有高抑制共模干扰的能力和高 输入阻抗。 功率放大器A3为后级,它不仅切断共模干扰的传输,还将双 端输入方式变换成单端输出方式,以满足负载的需要
第二节 霍尔式传感器
霍尔式传感器是基于霍尔效应原理而将被测量,如电 流、磁场、位移、压力、压差、转速等转换成电动势输出 的一种传感器。 虽然它的转换率较低,温度影响大,要求转换精度较 高时必须进行温度补偿,但霍尔式传感器结构简单,体积 小,坚固,频率响应宽(从直流到微波),动态范围(输 出电动势的变化)大,无触点,使用寿命长,可靠性高, 易于微型化和集成电路化,因此在测量技术、自动化技术 和信息处理等方面得到广泛的应用。
a) 两电极点不在同一等位面上 b) 等位面歪斜
一般要求U0<lmV。除了工艺上采取措施降低U0外, 还需 采用补偿电路加以补偿。由于霍尔元件可等效为一个四臂电 桥,如图5-9a所示,因此可在某一桥臂上并上一定电阻而将 U0降到最小,甚至为零。
r1
A
r3
C
r2 B
r4
D
图5-9b中给出了几种常用的不等位电动势的补偿电路, 其中不对称补偿简单,而对称补偿温度稳定性好 。
一、工作原理与特性 (一)霍尔效应
通电的导体或半导体,在垂直于电流和 磁场的方向上将产生电动势的现象。
B I
+ + + + + + + + + - - - + + - - - +
d UH
b
l
霍尔效应原理图
B
- - -- - - - -
fl fE EH I
b
+ ++ + + + + + +
l
设霍尔片的长度为l,宽度为b,厚度为d。又设电子以均匀 的速度v运动,则在垂直方向施加的磁感应强度 B的作用下,它 受到洛仑兹力
FL evB
e—电子电量(1.62×10-19C); v—电于运动速度。
同时,作用于电子的电场力
FH eEH eU H / b
当达到动态平衡时
evB eU H / b
d
电流密度 j=nev
I jb d nevb d
得到: v
I / neb d
得:
代入:
(四)基本电路
霍尔元件的基本电路
在实际应用中,霍尔 元件可以在恒压或恒流条 件下工作。
a.恒压工作 恒压条件下性能不好的 主要原因: 恒压工作的控制电流:
UC Ic Rsr
输入电阻随温度变化
RH IB UH K H IB d
b.恒流工作
RH IB UH K H IB d
由于输入电阻的温度系数大, 偏移电压的影响更为严重
UH=KH IB cosθ
注意:当控制电流的方向或磁场方向改变时,输出霍 尔电势的方向。
eIB / neb d eU H / b UH IB ned
具有上述霍尔效应的元件称为霍尔元件。霍尔式传感器就 是由霍尔元件所组成。金属材料中自由电子浓度n很高,因此 RH很小,使输出UH极小,不宜作霍尔元件。 如果是P型半导体,载流子是空穴,若空穴浓度为p,同 理可得UH=IB/ped。 一般电子迁移率大于空穴迁移率,因此霍尔元件多用N型 半导体材料。霍尔元件越薄(即d越小),kH就越大,所以通 常霍尔元件都较薄。薄膜霍尔元件厚度只有1μm左右。
RP
RP RP (a) (b ) (c) R (d )
RP
2. 寄生直流电动势
当霍尔元件通以交流控制电流而不加外磁场时,霍尔输 出除了交流不等位电动势外,还有直流电动势分量,称为寄 生直流电动势。 该电动势是由于元件的两对电极不是完全欧姆接触而形 成整流效应,以及两个霍尔电极的焊点大小不等、热容量不 同引起温差所产生的。它随时间而变化,导致输出漂移。因 此在元件制作和安装时,应尽量使电极欧姆接触,并做到散 热均匀,有良好的散热条件。 另外,霍尔电极和激励电极的引线布置不合理,也会产生 零位误差,也需予以注意。
霍尔元件的零位误差包括不等位电动势、寄生直流电动 势等。
二、霍尔元件的误差及其补偿 1. 不等位电动势U0及其补偿
不等位电动势是零位误差中最主要的一种。当霍尔元件在 额定控制电流(元件在空气中温升10℃所对应的电流)作用下, 不加外磁场时,霍尔输出端之间的空载电势,称为不等位电动 势U0。 U0产生的原因是由于制造工艺不可能保证将两个霍尔电极 对称地焊在霍尔片的两侧,致使两电极点不能完全位于同一等 位面上,如图5-8a所示。此外霍尔片电阻率不均匀或片厚薄不 均匀或控制电流极接触不良都将使等位面歪斜,致使两霍尔电 极不在同一等位面上而产生不等位电动势。