1.盖斯俄国化学家1836年经过许多次实验,他总结出一条规律:在任何化学反应过程中的热量,不论该反应是一步完成的还是分步进行的,其总热量变化是相同的,1860年以热的加和性守恒定律形式发表。
这就是举世闻名的盖斯定律。
盖斯定律是断定能量守恒的先驱,也是化学热力学的基础。
我们常称盖斯是热化学的奠基人。
2.勒·夏特列/勒·夏特利埃(Le Chatelier,Henri Louis),法国化学家。
对热学的研究很自然将他引导到热力学的领域中去,使他得以在1888年宣布了一条他因而遐迩闻名的定律,那就是至今仍称为的勒夏特列原理。
如果改变影响平衡的一个条件(如浓度,压强或温度等),平衡就向能够减弱这种改变的方向移动。
3.阿伏加德罗(Ameldeo Avogadro,1776~1856)意大利物理学家、化学家。
第一个认识到物质由分子组成、分子由原子组成。
4.德米特里·门捷列夫,19世纪俄国化学家,他发现了元素周期律,并就此发表了世界上第一份元素周期表。
5.1962年,巴特利特在研究无机氟化物时,发现强氧化性的六氟化铂可将O2氧化为O2+。
由于O2到O2+的电离能(1165 kJ mol)与Xe到Xe的电离能相差不大(1170 kJ mol),因此他尝试用PtF6氧化Xe。
结果反应得到了橙黄色的固体。
巴特利特认为它是六氟合铂酸氙(Xe[PtF6])。
这是第一个制得的稀有气体化合物。
后期的实验证明该化合物化学式并非如此简单,包括XeFPtF6和XeFPt2F11。
6.吉尔伯特·路易斯(GilbertNewtonLewis,1875—1946年)美国化学家。
1916年,路易斯和柯塞尔同时研究原子价的电子理论。
柯塞尔主要研究电价键理论。
路易斯主要研究共价键理论,该理论认为,两个(或多个)原子可以相互“共有”一对或多对电子,以便达成惰性气体原子的电子层结构,而形成共价键。
路易斯提出的共价键的电子理论,基本上解释了共价键的饱和性,明确了共价键的特点。
共价键理论和电价键理论的建立,使得十九世纪中叶开始应用的两元素间的短线(即表示原子间的相互作用力或称“化学亲和力”)开始有明确的物理意义。
但还没解决共价键的本性问题。
7.鲍林(1901.2.28—1994.8.19)是著名的量子化学家鲍林对化学键本质的研究,引申出了广泛使用的杂化轨道概念。
杂化轨道理论认为,在形成化学键的过程中,原子轨道自身回重新组合,形成杂化轨道,以获得最佳的成键效果。
根据杂化轨道理论,饱和碳原子的四个价层电子轨道,即一个2S轨道和三个2P轨道喙线性组合成四个完全对等的sp3杂化轨道,量子力学计算显示这四个杂化轨道在空间上形成正四面体,从而成功的解释了甲烷的正四面体结构。
(现代价键理论,VB法)鲍林于1932年首先提出了用以描述原子核对电子吸引能力的电负性概念,并且提出了定量衡量原子电负性的计算公式。
8.弗里德里希·洪特(Friedrich Hund,1896年2月4日—1997年3月31日),德国理论物理学家,在能量相等的轨道上,自旋平行的电子数目最多时,原子的能量最低。
所以在能量相等的轨道上,电子尽可能自旋平行地多占不同的轨道。
例如碳原子核外有6个电子,按能量最低原理和泡利不相容原理,首先有2个电子排布到第一层的1s轨道中,另外2个电子填入第二层的2s轨道中,剩余2个电子排布在2个p轨道上,具有相同的自旋方向,而不是两个电子集中在一个p轨道,自旋方向相反。
9.分子轨道理论(MO理论)是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。
它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的认知,即认为分子中的电子围绕整个分子运动。
1932年,美国化学家慕利肯和德国化学家洪特提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即MO法。
该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。
目前,该理论在现代共价键理论中占有很重要的地位。
10.约翰尼斯·迪德里克·范·德·瓦耳斯(范德华)确立真实气体状态方程和分子间范德华力11.德国物理化学家、合成氨的发明者弗里茨·哈伯(Fritz Haber)。
12.瑞士化学家米勒(Paul Hermann Müller)首推DDT为实验样品13.维勒(FriedrichWöhler1800—1882)德国化学家。
主要从事有机合成和无机物研究。
1828年他发表了“论尿素的人工制成”一文,引起了化学界的震动。
这被认为是第一次人工合成有机物,对当时流行的生命力学说是巨大的冲击,并开创了有机合成的新时代。
他还曾研究苦杏仁油,发现了氢醌、尿酸,可卡因等。
在无机化学领域,他也有不少贡献。
1827年和1828年发现了铝和铍两种元素。
对硼、钛、硅的化合物进行了广泛研究并发现了硅的氢化物。
14.琼斯·雅可比·贝采里乌斯(Jons Jakob Berzelius)瑞典化学家、伯爵,现代化学命名体系的建立者、硅、硒、钍和铈元素的发现者,被称为有机化学之父。
15.尤斯图斯·冯·李比希德国化学家他最重要的贡献在于农业和生物化学,他创立了有机化学。
因此被称为“化学之父”。
发现了同分异构现象1829年发现并分析马尿酸;1831年发现并制得氯仿和氯醛;1832年与F.维勒共同发现安息香基并提出基团理论,为有机结构理论的发展作出贡献;1839年提出多元酸理论。
16.荷兰化学家范特霍夫开创了以有机化合物为研究对象的立体化学(碳原子成键),在化学反应速度、化学平衡和渗透压方面取得了骄人的研究成果。
17.勒贝尔(Le Bel,Joseph Achille)法国化学家。
1874年,他比范特霍夫早两个月,完全独立地宣布了旋光性与分子结构之间的关系方面的理论。
虽然他的分析不象范特霍夫那样非常精细,但是照例是要让他分享同等的荣誉的。
1891年他曾试图证实氮原子键的空间配置也能产生旋光性。
虽则勒贝尔的这一想法是正确的,但他的论证是错误的。
这一任务只好留待波普来完成了。
18.马尔科夫尼科夫(Markovnidov , Vladimir Vasilevich)俄国化学家。
指出了氯原子和溴原子与含双键碳链的连接特点。
这一特点的成因是半个世纪后泡令由共振说解释清楚的,不过,人们现在仍称这种加成过程遵从马尔科夫尼科夫规则。
(马氏规则)他对于凯库勒的有机分子机构学说很有兴趣,并使之有了一个重大发展。
当时,人们普遍认为,碳原子只能形成六碳环。
诚然,六碳环最稳定,也最容易生成,但马尔科夫尼科夫证明这并不是唯一的可能。
1879年,他制成了四碳环化合物;1889年,他又实现了七碳环化合物。
19.凯库勒(1829 — 1896 年), 德国化学家。
首次把原子价的概念从平面推向三维空间。
主要研究有机化合物的结构理论。
在梦中发现了苯的结构简式,被称为一大美谈。
凯库勒式:苯环单双键交替。
20.格利雅(1871~1935)法国化学家。
于1901年研究用镁进行缩合反应,发现烷基卤化物易溶于醚类溶剂,与镁反应生成烷基氯化镁(即格氏试剂)。
还对铝、汞有机化合物及萜类化合物均进行过广泛的研究。
他还研究过羰基缩合反应和烃类的裂化、加氢、脱氢等反应;在第一次世界大战期间研究过光气和芥子气等毒气。
21.詹姆斯·沃森(1928~) Watson,James Dewey 与弗朗西斯·哈里·康普顿·克里克Francis Harry Compton Crick 合作,提出了DNA的双螺旋结构学说。
这个学说不但阐明了DNA 的基本结构,并且为一个DNA分子如何复制成两个结构相同DNA分子以及DNA怎样传递生物体的遗传信息提供了合理的说明。
它被认为是生物科学中具有革命性的发现,是20世纪最重要的科学成就之一。
22.阿尔弗雷德·伯纳德·诺贝尔(Alfred Bernhard Nobel, 1833.10.21-1896.12.10)是瑞典化学家、工程师、发明家、军工装备制造商和炸药的发明者。
研究最多的是硝化甘油。
23.卡尔·威尔海姆·舍勒(Carl Wilhelm Scheele) 是瑞典著名化学家,氧气的发现人之一,同时对氯化氢、一氧化碳、二氧化碳、二氧化氮等多种气体,都有深入的研究。
首先通过二氧化锰与浓盐酸制取了黄绿色气体。
24.戴维确认氯气由一种元素组成。
25.Svante August Arrhenius(1859一1927)斯范特·奥古斯特·阿累尼乌斯(也译作阿伦尼乌斯)是近代化学史上的一位著名的化学家,又是一位物理学家和天文学家。
阿累尼乌斯刻苦钻研,具有很强的实验能力。
1883年5月,他提出了电离理论的基本观点:“由于水的作用,电解质在溶液中具有两种不同的形态,非活性的分子形态,活性的离子形态。
溶液稀释时,活性形态的数量增加,所以溶液导电性增大”。
阿累尼乌斯同时提出了酸、碱的定义;解释了反应速率与温度的关系,提出活化能的概念及与反应热的关系等。
1.中文名称:分光光度计英文名称:spectrophotometer定义1:利用单色仪或特殊光源提供的特定波长的单色光通过标样和被分析样品,比较两者的光强度来分析物质成分的光谱仪器。
定义2:带有可调节选择入射光波长单色光器的光度计。
可以分析溶液的吸收光谱(对不同波长入射光的吸收情况)而进行定性分析,也可以固定入射光波长去测量吸光度对物质进行定量分析。
依使用的波长不同,有可见、紫外、红外分光光度计等。
定义3:带有可调节选择入射光波长单色光器的光度计。
可以分析溶液的吸收光谱(对不同波长入射光的吸收情况)而进行定性分析,也可以固定入射光波长去测量吸光度对物质进行定量分析。
依使用的波长不同,有可见、紫外、红外分光光度计等。
2.红外光谱仪的广泛应用进行化合物的鉴定进行未知化合物的结构分析进行化合物的定量分析进行化学反应动力学、晶变、相变、材料拉伸与结构的瞬变关系研究工业流程与大气污染的连续检测在煤炭行业对游离二氧化硅的监测卫生检疫,制药,食品,环保,公安,石油,化工,光学镀膜,光通信,材料科学等诸多领域珠宝行业的检测水晶石英羟基的测量聚合物的成分分析药物分析3.电子显微镜:透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。