三代基因组编辑技术
Plant Bacterial TAL Effector
发现:1989年,植物病原体黄担保菌属(Xanthomonas spp.)avrbs3基因 发展:2007年,发现其序列特异性核酸结合特性,avvrBs3-TA. 2009年,TAL effector 氨基酸序列与核酸靶序列的密码被破译、 应用:2011年,Nature Biotechonlogy同时发辫四篇TALEN基因敲除文章和一篇综述
Genetics, Vol. 188, 773–782
ZFN mediated genome editing
• FOK1二聚体互作 • 与非同源性末端接合(Non-homologous end joining, NHEJ)和同源重组(Homologous Recombination)等方法结合使用 • 同源二聚体或单一ZFN单元的结合造成非特 异性酶切,即脱靶效应(off-target)
CRISPR/Cas9系统的成功应用案例
• 2013年1月29日在《nature biotechnology》上发表的《RNA-guided editing of bacterial genomes using CRISER-Cas systems》一文 中,作者利用CRISER-Cas systems用设计好的DNA莫版替换相应基因 来达到定点修饰 • 2013年1月29日在《nature biotechnology》上发表的《efficient genome editing in zebra fish using a CRISER-Cas system》一文 中,作者利用人工合成的sgRNAs能指导Cas9内源性核酸酶对斑马鱼胚 胎基因进行修饰 • 2013年2月15日在《science》上发表的《Multiplex Genome Engineering UsingCRISPR/Cas Systems》一文中,作者利用一个包 含两个靶向不同的spacers的crRNA实现了同时对两个基因进行编辑 • 2013年4月12日在《cell stem cell》上发表的《Enhanced Efficiency of Human Pluripotent Stem Cell Genome Editing through Replacing TALENs with CRISPRs》一文中,作者利用 TALENs和CRISPRs对同一基因进行修饰,效率分别为0%-34%和51%-79%
基因组编辑技术
基因组编辑技术的介绍
基因组编辑技术是一种可以在基因组 水平上对DNA序列进行改造的遗传 操作技术。 这种技术的原理是构建一个人工内切 酶,在预定的基因组位置切断DNA, 切断的DNA在被细胞内的DNA修复 系统修复过程中会产生突变,从而达 到定点改造基因组的目的。 通过修复途径,基因组编辑技术可以 实现三种基因组改造,即基因敲除, 特异突变的引入和定点转基因 基因组编辑是研究基因功能的重要手 段之一,也可被用于人类遗传性疾病 的治疗,因此这类技术成为现代分子 生物学的研究热点
Mechanism of CRISPR/Cas9 to target DNA
蛋白质:核酸聚合物
HNH RuvC
Guide RNA: crRNA( CRISPR-derived RNA ) 通过碱基配对与 tracrRNA (transactivating crRNA )结合形成 tracrRNA/crRNA 复合物。通过人工 设计这两种 RNA,可以改造形成具 有引导作用的sgRNA (short guide RNA ) Cas9: 复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA。HNH结构域剪切配对的部分, Ruvc结构域剪切未配对的链。
ZFN,TALEN,CRISPR/Cas9 的比较
均由自然界存在的核酸酶系统改造而来 均具有识别核酸碱基特异性的结构域 发挥作用的机制:均通过在细胞基因组创造双链断裂缺口, 从而诱发细胞自身修复机制完成基因修饰
Zinc Finger Nuclease(ZFN)
What is a Zinc Finger?
- 是一种常出现在DNA结合蛋白质中的一种结构基 元。锌螯合在氨基酸链中形成锌的指状结构。 - 对基因调控起重要的作用。根据其保守结构域的不 同,可将锌指蛋白主要分为C2H2型、C4型和C6型。 锌指通过与靶分子DNA、RNA、DNA-RNA的序 列特异性结合,以及与自身或其他锌指蛋白的结合 在转录和翻译水平上调控基因的表达、细胞分化以 及胚胎发育。
ZFN mediated genome editing
ZFN的限制性
已建有ZFN库,识别多种DNA序列,但不 能达到识别任意靶DNA,其应用受到限制。 细胞毒性—大量脱靶位点的出现导致基因 组的破坏
构建繁琐—识别特性决定构建难度大,时 间长
Transcription activator like effector nuclease(TALEN)
2007 年,Barrangou 等首次发现细菌可能利用CRSPR 系统抵抗噬菌体入 侵;2008 年,Marraffini 等发现细菌CRISPR 系统能阻止外源质粒的转 移,首次利用实验验证了CRISPR 系统的功能
2013 年初,MIT 的研究组首次利用CRISPR/Cas9 系统对人293T 细胞 EMX1 和PVALB 基因以及小鼠Nero2A 细胞Th 基因实现了定点突变。同 年Mali 利用CRISPR/ Cas9 在人293T 细胞和K652 细胞基因的靶位点形成 双链或单链的切口,从而激活细胞的DNA 修复机制高效介导外源基因定 点插入。
CRISPR-Cas系统的结构
CRISPR-CAS 系统的组成主要包括: 由不连续的重复序列 R( repeat) 与长度相似的间区序列S( spacers) 间隔排 列而成的CRISPR 簇,前导序列L( leader) 以及一系列 CRISPR 相关蛋白基因cas。
Cas蛋白是一种双链DNA核酸酶,能在 guide RNA引导下对靶位点进行切割。它 与folk酶功能类似,但是它并不需要形 成二聚体才能发挥作用。
• TALEN 技术是一种崭新的分子生物学工具。利用TAL的 序列模块,可组装成特异结合任意DNA序列的模块化蛋白, 从而达到靶向操作内源性基因的目的,它克服了ZFN方法 不能识别任意目标基因序列,以及识别序列经常受上下游 序列影响等问题,而具有ZFN相等或更好的灵活性,使基 因操作变得更加简单方便。 • 然而,构建过程中,TALE 分子的模块组装和筛选过程比 较繁杂,需要大量的测序工作。对于普通实验室的可操作 性较低。
- 结构
• 24-30 个氨基酸残基 •形成α-β-α二级结构 • 两保守的半胱氨酸和组氨酸配位一个锌原子。
Zinc finger nuclease (ZFN)
由一个 DNA 结合域(DNA-binding domain)和一个非特异性核 酸内切酶Fok1构成。DNA 结合域是由一系列 Cys2-His2锌指蛋白 (zinc-fingers)串联组成(一般 3~4 个),每个锌指蛋白识别并结 合一个特异的三联体碱基。
基因组编辑三大利器
介绍
• ZFN:Zinc-finger nucleases 锌指核糖核酸 酶 • TALENs:transcription activator-like effector nucleases 转录激活因子样效应 物核酸酶 • CRISPR/ Cas9 :clustered regularly interspaced short palindromic repeats 成簇的规律间隔的短回文重复序列/ CRISPR-associated 9
CRISPR/Cas9 system
CRISPR-Cas系统简介
CRISPR-Cas系统的研究历史
1987 年,日本课题组在K12 大肠杆菌的碱性磷酸酶基因附近发现串联间 隔重复序列,随后发现其广泛存在于细菌和古细菌的基因组中, 2002 年, 正式将其命名为成簇的规律间隔的短回文重复序列 2005 年发现CRISPR 的间隔序列(spacer)与宿主菌的染色体外的遗传物质 高度同源,推测细菌可能通过CRISPR 系统可能以类似于真核生物的 RNACRISPR/Cas在基因改造中的应用
• CRISPR/Cas系统的作用特性与限制性核酸内切酶相似,它对序列的特 异性切割主要依赖于crRNA与Cas蛋白形成的核糖核蛋白复合物识别 靶序列上的PAM( Protospacer-adjacent Motif )以及protospacer • 发现tracrRNA对靶点的识别和切割是必需的,tracrRNA的5'端与成熟 的crRNA 3'端有部分序列(约13 bp)能够配对进而形成茎环结构,对维 持crRNA与靶点的配对可能十分重要 根据tracrRNA与crRNA的结构特 性,他们tracrRNA和crRNA表达为一条嵌合的向导RNA (guide RNA, gRNA),并在体外证明gRNA可以发挥tracrRNA和crRNA的功能 • CRISPR/Cas系统有三类,其中TypeⅡ型系统的核糖核蛋白复合物相对 简单,除crRNA和tracrRNA外,只有Cas9一个蛋白 目前,产脓链球菌 (SF370)的TypeⅡ型系统(CRISPR/Cas9)是被改造的最为成功的人工 核酸内切酶,已经在人类细胞 小鼠 斑马鱼中成功实现了基因组定点 修饰。
16
The principle of TALEN-mediated gene targeting(基本原则)
Ⅰ Ⅱ.利用细胞 HR(同源重 组)修复机 制实现基因 修饰 Ⅱ Ⅲ
Ⅰ.利用TALEN在特 定位点创造DSB
Ⅲ.利用细胞NHEJ (非同源性末端接合) 修复机制实现基因修 饰
TALENs的优缺点
Functional domains of Xanthomonas TAL effectors TAL 效应蛋白的不同结构功能域