当前位置:文档之家› 第7章 动力装置循环

第7章 动力装置循环


ηt
=1−
ε
k −1
⎡⎣λ
λρ k
−1+
−1
kλ (ρ
−1)⎤⎦
p 3(4)
ρ =1
ρ = v4
v3
T
ηtv
=1−
1
ε k −1
3(4)
2
2
5
5
1
1
v
汽油机理想循环
s
柴油机与汽油机动力循环图示
p 3
2
4 5
1
v 柴油机,压燃式
ρ =1
p 3(4)
2 5
1 v 汽油机,点燃式
定压加热循环(狄塞尔循环)
第七章 动力装置循环
公司
哈尔滨工业大学(威海)汽车工程学院
本章主要内容及重点
蒸汽动力装置循环 活塞式内燃机循环 燃气轮机装置循环
1、掌握动力循环分析方法 2、掌握蒸汽动力装置循环的理想循环 3、掌握活塞式内燃机循环的理想循环 4、掌握燃气轮机装置循环的理想循环
动力装置
热能动力装置 : 将热能转换为机械能的设备,称为
将朗肯循环折合成熵变相
等、换热量相等、效率相等
的等效卡诺循环。
T1
=
sa
q1 − sb
ηt
= 1− T2 T1
T1
T2
则 ηt
蒸汽参数对朗肯循环热效率的影响
(1) p1 , p2不变t1
T
5 4
3
1' 1 6
2 2'
s
优点:
• T1
ηt
• x2' ,有利于汽机
安全。
缺点:
• 对耐热及强度要 求高,目前初温
理想混合加热循环的计算
分析循环吸热量,放热量,热效率和功量
吸热量
T
4
3
q1 = cv (T3 − T2 ) + cp (T4 − T3 )
5
放热量
2
q2 = cv (T5 − T1 )
1
热效率
s
ηt
=w q1
= q1 − q2 q1
= 1− q2 q1
=
1−
T3

T5 T2 +
− T1
k (T4
− T3
ηtp
=1−
ε
ρk −1
k−1k(ρ −1)
p
λ =1
T
λ = p3
p2
升压比
4
2(3)
4
5
1
2(3)
5
1
v
s
柴油机理想循环
思考
ห้องสมุดไป่ตู้同样是柴油机
为什么有混合加热循环和 定压加热循环之分?
高速柴油机与低速柴油机循环图示
p 3
2
4
ηtp
=1−
p
εk
ρk −
−1k (ρ
1 −
1)
λ
=1
2(3) 4
5
5
1
v 柴油机,压燃式
1
v
活塞式内燃机的实际循环
34
p
2
2′
0
Atmosphere
1
v
活塞式内燃机的实际循环
34
p
2
2′
0
Atmosphere
1
v
活塞式内燃机的实际循环
34
p
2
2′
0
Atmosphere
1
v
活塞式内燃机的实际循环
34
p
2
2′
0
Atmosphere
1
v
活塞式内燃机的实际循环
34
p
2
2′
排气过程5-0:到点5,排气阀打开。
本章结束
公司
哈尔滨工业大学(威海)汽车工程学院
定比热理想气体
5
工质数量不变
p0
1'
3.0-1和1'-0抵消
0
1
开口→闭口循环
V
4.多变→绝热
不可逆→可逆
理想混合加热循环(萨巴德循环)
p 循环中Tmax=T4
34
s
2
s
5
循环中Pmax=P3=P4
T p4
3
v
2
5
v
1
1
v
s
1-2为定熵压缩过程 2-3为定容加热过程 3-4为定压加热过程 4-5为定熵膨胀过程 5-1为定容放热过程

发电机
锅炉
汽轮机
凝汽器
凝汽器
给水泵
给水泵
以水蒸气为工质的卡诺循环
p
1→2 绝热 膨胀
汽轮机
4 1 2→3 定压(等温)放热 冷凝器
3
2
v
3→4 绝热压缩
水泵
4→1 定压(等温)加热 锅炉
T
能否实现?
41
3
存在什么问题? 2
s
问题
1-2:可实现,但2点干度低,汽机
T
叶片腐蚀
2-3:准确控制达到3点很难,到 4 1 2´最理想
热力发动机,简称热机。 动力装置循环(简称动力循环或热机循环): 蒸汽动力装置循环:以蒸汽为工质的热机的工
作循环(如蒸汽机、蒸汽轮机等)。
气体动力装置循环:以气体为工质的热机的工 作循环(如内燃机、燃气轮机等)。
研究热机循环的方法
研究目的:合理安排循环,提高热效率。
建立实际循环的简化热力学模型,用简单、 典型的可逆过程和循环来近似实际复杂的不可逆 过程和循环,通过热力学分析确定其基本规律。
1
v 低速柴油机,压燃式
影响活塞式内燃机热效率主要因素
ηt
=1−
ε
k −1
⎡⎣λ
λρ k
−1+
−1
kλ (ρ
−1)⎤⎦
压缩比 预胀比 升压比
ε = v1
v2
λ = p3
p2
ρ = v4
v3
反映气缸容积 反映供油规律
*燃气轮机循环示意图
2
压气机
燃烧室
3
燃气轮机
1
4
理想化 1)工质:数量不变,定比热理想气体
η t,C
=1−
T2 T1
卡诺循环P-V图
卡诺循环T-S图
气体的等温加热和等温放热过程很难实现
以水蒸气为工质的卡诺循环
由水蒸气形成过程可知:
饱和水的定压汽化和饱和蒸汽的定压凝结
过程中温度都是不变的,能不能用?
p
T
41 32 v
4
1
3
2
s
7.1.1朗肯循环
朗肯循环:最简单的蒸汽动力循环
汽轮机

四个主要装置:
改变循环参数 改变循环形式
联合循环
提高初温度 提高初压力 降低乏汽压力 再热循环 回热循环
热电联产
燃气-蒸汽联合循环 新型动力循环
…...
7.2 活塞式内燃机循环
内燃机分类
内燃机分类
按燃料:煤气机、汽油机和柴油机; 按点火方式:点燃式和压燃式; 按冲程:四冲程和二冲程
四冲程柴油机工作原理
空气、油
废气
吸气
压缩
膨胀
排气
7.2.1 活塞式内燃机的实际循环
以四冲程柴油机为例
p
进气过程0-1:进气阀开启,活塞从最左
端(上止点)下行,吸入空气。
0
Atmosphere
v
活塞式内燃机的实际循环
p
进气阀的节流作用,气体压力略低于大
气压力。
0
Atmosphere
v
活塞式内燃机的实际循环
p
0
Atmosphere
一般在550℃左右
• v2' 汽机出口
尺寸大
蒸汽参数对朗肯循环热效率的影响
(2) t1 , p2不变p1
T
5' 5
4' 4
3
1' 1 6'
6
2' 2 s
优点:
• T1
ηt
• v2' ,汽轮机出口
尺寸小
缺点: • 对强度要求高
• x2' 不利于汽
轮机安全。一般 要求出口干度大 于0.85~ 0.88

3
小结
3-4:压缩机工作不稳定,效率低 2 4-1:可以实现,但T1的提高受限
s tcr=373.99 ℃
①蒸汽动力装置采用卡诺循环效率并不高
②分析此循环明确了蒸汽动力循环改进方向
改进方向
T
4 2´
3
2-2´代替2-3
采用过热蒸汽代替饱和蒸汽
1
p
2
4
1
s
3
2
v
水蒸气动力循环系统的简化
锅 炉
4
1 汽轮机
发电机 2
凝汽器
3 给水泵
简化(理想化):
1→2 汽轮机 s 膨胀 2→3 凝汽器 p 放热 3→4 给水泵 s 压缩 4→1 锅炉 p 吸热
朗肯循环
朗肯循环p-v图和T-s图
p-v图
p
4
1
3
2
v
1→2 汽轮机 s 膨胀 2→3 凝汽器 p 放热 3→4 给水泵 s 压缩 4→1 锅炉 p 吸热
p
2
2′
0
5 0’ Atmosphere 1
v
活塞式内燃机的实际循环
34
p
2
2′
0
5 4 0’
Atmosphere 1
v
活塞式内燃机的实际循环
相关主题