当前位置:文档之家› 半导体激光器

半导体激光器


p
E
c
hf
p
Ef
p
Ev
n
E
c
n
hf
Ef
n
Ev
内部电场
外加电场
电子,
空穴
正向偏压下P-N结能带图
获得粒子数反转分布结上施加正向电压,产生与内部电场相反方向的外加 电场,结果能带倾斜减小,扩散增强。电子运动方向与电场方 向相反,便使N区的电子向P区运动,P区的空穴向N区运动, 最后在PN结形成一个特殊的增益区。
内部电场产生与扩散相反方向的漂移运动,直到P区和N区的 Ef 相同,两种运动处于平衡状态为止,结果能带发生倾斜,见图 3.3(b)。
P区
能量
p
E
c
P区
p
E
v
内部电场
PN 结空 间电 荷区
扩散 漂移
N区
n
E
c
(a) P-N结内载流子运动;
势垒
E
f
N区
n
E
v
图 3.3 PN
(b) 零偏压时P-N结 的能带倾斜图
半导体激光器(Laser Diode 即LD)
6.3.1 半导体激光器工作原理和基本结构 一、半导体激光器的工作原理
受激辐射和粒子数反转分布 PN结的能带和电子分布 激光振荡和光学谐振腔 二、半导体激光器基本结构 6.3.2 半导体激光器的主要特性 一、发射波长和光谱特性 二、激光束的空间分布 三、转换效率和输出光功率特性 四、 频率特性 五、 温度特性
如果N1>N2,即受激吸收大于受激辐射。当光通过这种物 质时,光强按指数衰减, 这种物质称为吸收物质。
如果N2>N1,即受激辐射大于受激吸收,当光通过这种物 质时,会产生放大作用,这种物质称为激活物质。
N2>N1的分布,和正常状态(N1>N2)的分布相反,所以称 为粒子(电子)数反转分布。
问题:如何得到粒子数反转分布的状态呢?
DH激光器工作原理
由于限制层的带隙比有源层宽,施加正向偏压后, P层的空 穴和N层的电子注入有源层。
P层带隙宽,导带的能态比有源层高,对注入电子形成了势垒, 注入到有源层的电子不可能扩散到P层。
同理, 注入到有源层的空穴也不可能扩散到N层。
这样,注入到有源层的电子和空穴被限制在厚0.1-0.3 μm的 有源层内形成粒子数反转分布,这时只要很小的外加电流,就 可以使电子和空穴浓度增大而提高效益。
导带
导带
价带
价带
正常分布
反转分布
产生激光的必要条件二:粒子数反转分布
产生粒子数反转的方法
• 注入载流子-半导体激光器 • 强光对激光物质进行照射-固体激光器 • 气体电离-气体激光器
2. PN
在半导体中,由于邻近原子的作用,电子所处的能态扩展成
能级连续分布的能带。能量低的能带称为价带,能量高的能带称
4. 半导体激光器基本结构
驱动电源
注入式 光子激励
电子束激励
工作物质
PN结(同质结) 异质结 单异质结
双异质结(DH)
谐振腔
解理面 布拉格反馈
分布反馈式DFB 分布布拉格反射式DBR
4.
1)、同质结(PN结)半导体激光器
最简单的半导体激光器由一个薄有源层(厚度约0.1μm)、 P型和N型限制层构成,如下图所示。
E2
初态
E1
E2
hυ=E2-E1
E1
终态
(a) 自发辐射 光子的特点:非相干光
E2

E1
初态
E2
E1
终态
(b) 受激辐射 光子的特点:相干光
E2

E1
初态
E2
E1
终态
E2
E2

E1
终态
E1
初态
(b) 受激辐射
(c) 受激吸收
产生激光的必要条件一:受激辐射占主导地位
(1)自发辐射
在高能级E2的电子是不稳定的,即使没有外界的作用, 也会 自动地跃迁到低能级E1上与空穴复合,释放的能量转换为光子辐 射出去,这种跃迁称为自发辐射,见图6-15(a)。
当系统处于热平衡状态时,
N2 exp( E2 E1 )
N1
kT
式中, k=1.381×10-23J/K,为波尔兹曼常数,T为热力学温 度。由于(E2-E1)>0,T>0,所以在这种状态下,总是N1>N2。 这是因为电子总是首先占据低能量的轨道。
受激吸收和受激辐射的速率分别比例于N1和N2,且比例系 数(吸收和辐射的概率)相等。
为导带,导带底的能量Ec 和价带顶的能量Ev 之间的能量差EcEv=Eg称为禁带宽度或带隙。电子不可能占据禁带。
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
(a)
(b)
(c)
图 3.2
(a) 本征半导体; (b) N型半导体; (c) P型半导体
能量 Eg
导带
L= m 或 2nL
2n
m
式中,λ为激光波长,n为激活物质的折射率,m=1, 2, 3 … 称为纵模模数。
在共振腔内沿腔轴方向形成的各种驻波称为谐振腔的纵模。 有2个以上纵模激振的激光器,称为多纵模激光器。通过在光 腔中加入色散元件或采用外腔反馈等方法,可以使激光器只有 一个模式激振,这样的激光器称为单纵模激光器。
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
在热平衡状态下(a,) 能量为E的能级(b)被电子占据的概(c率) 为费米分

1
p(E)
1
E exp(
Ef
)
(3.3)
kT
式中,k为波兹曼常数,T为热力学温度。Ef 称为费米能 级,用来描述半导体中各能级被电子占据的状态。
在费米能级,被电子占据和空穴占据的概率相同。
4. 半导体激光器基本结构
3)、双异质结(DH)半导体激光器
图3.5是双异质结(DH)平面条形结构。
这种结构由三层不同类型半导体材料构成,不同材料发射不 同的光波长。
结构中间有一层厚0.1-0.3 μm的窄带隙P型半导体,称为有 源层;两侧分别为宽带隙的P型和N型半导体,称为限制层。三 层半导体置于基片(衬底)上,前后两个晶体解理面作为反射镜构 成法布里-珀罗(FP)谐振腔。
q
3
工作物质
EC
光 增 益 EV
产生激光的必要条件三:有光学谐振腔
3
激光振荡的产生 粒子数反转分布(必要条件)+ 激活物质置于光学谐振腔中,
对光的频率和方向进行选择 = 连续的光放大和激光振荡输出。 基本的光学谐振腔由两个反射率分别为R1和R2的平行反射
镜构成,并被称为法布里-珀罗(Fabry Perot, FP)谐振腔。 由于谐振腔内的激活物质具有粒子数反转分布,可以用它产
LD的发光过程
• 注入电流,即注入载流子; • 在有源区形成粒子数反转,导带电子不稳定,少
数电子自发跃迁到价带,产生光子; • 1个光子被导带中电子吸收跃迁到价带,同时释
放出2个相干光子,持续这个过程,直到释放出 多个相干光子,即在合适的腔内振荡放大; • 光子稳定振荡,光能量大于总损耗时,LD开始工 作。
另一方面,有源层的折射率比限制层高,产生的激光被限制 在有源区内,因而电/光转换效率很高,输出激光的阈值电流很 低,很小的散热体就可以在室温连续工作。

P
(a)
Ga1- xAlxAs
E
(b)
能 量
n 折
(c) 射 率
空穴
P GaAs
N

Ga1- yAlyAs
电子
复合 异质 势垒
~ 5%
P (d) 光
一般状态下,本征半导体的电子和空穴是成对出现的,用Ef 位于禁带中央来表示,见图3.2(a)。
在本征半导体中掺入施主杂质,称为N型半导体,见图3.2(b)。
在本征半导体中,掺入受主杂质,称为P型半导体,见图 3.2(c)。
在P型和N型半导体组成的PN结界面上,由于存在多数载流 子(电子或空穴)的梯度,因而产生扩散运动,形成内部电场, 见 图3.3(a)。
一个纵模只有在其增益大于或等于损耗时,才能成为 工作模式,即在该频率上形成激光输出。
在谐振腔内开始建立稳定的激光振荡的阈值条件为
11
γth =α+
ln 2L R1R2
式中,γth 为阈值增益系数,α为谐振腔内激活物质的损耗系 数,L为谐振腔的长度,R1,R2<1为两个反射镜的反射率
激光振荡的相位条件为
图 3.6 DH (a) 双异质结构; (b) 能带; (c) 折射率分布; (d) 光功率分布
3.1.2 半导体激光器的主要特性
1. 发射波长和光谱特性
半导体激光器的发射波长等于禁带宽度Eg(eV) h f =Eg
式中,f=c/λ,f (Hz)和λ(μm)分别为发射光的频率和波长,
c=3×108 m/s为光速,h=6.628×10-34J·S为普朗克常数, 1eV=1.6×10-19 J,代入上式得到
电流 金属接触
100μm
有源层
P型 N型 300μm
200μm 解理面
大面积半导体激光器
4. 1)、同质结半导体激光器
PN能带 所加的正向偏压必须满足
正向电压V时形成的双简并能带
结构
V EF EF Eg
e
e
PN结LD的特点:阈值电流高,常温下不能连续工作
相关主题