例1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
例2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静
止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静
止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2
,则F 的最小值是,F 的最大值是。
例3、一弹簧秤的秤盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k=800N/m ,系统处于静止状态,如图9所示。
现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,
求F 的最大值和最小值各是多少?(g=10m/s 2
)
例4、如图10,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力FB =2N ,A受到的水平力FA =(9-2t)N ,(t 的单位是s)。
从t =0开始计时,则:
A .A物体在3s 末时刻的加速度是初始时刻的5/11倍;
B .t >4s 后,B物体做匀加速直线运动;
C .t =4.5s 时,A物体的速度为零;
D .t >4.5s 后,AB的加速度方向相反。
图7
图8
图
9 图10
例5、如图11所示,细线的一端固定于倾角为450
的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球。
当滑块至少以加速度a=向左运动时,小球对滑块的压力等于零,当滑块以a=2g 的加速度向左运动时,线中拉力T=。
例6、如图所示,在小车的倾角为300
的光滑斜面上,用倔强系数k=500N/m 的弹簧连接一个质量为m=1kg 的物体,当小车以2
/3s m 的加速度运动时,m 与斜面保持相对静止,求弹簧伸长的长度?若使物体m 对斜面的无压力,小车加速度必须多大?若使弹簧保持原长,小车加速度大小、方向如何?
参考答案:
相互接触的物体间可能存在弹力相互作用。
对于面接触的物体,在接触面间弹力变为零时,它们将要分离。
抓住相互接触物体分离的这一条件,就可顺利解答相关问题。
下面举例说明。
例1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
据牛顿第二定律有:
mg-kx-N=ma 得N=mg-kx-ma 当N=0时,物体与平板分离,所以此时k
a g m x )
(-= 因为2
21at x =
,所以ka
a g m t )
(2-=。
例2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静
止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2
,则F 的最小值是,F 的最大值是。
分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____
0.2s 这段时间内P 向上运动的距离:
x=mg/k=0.4m
因为221at x =,所以P 在这段时间的加速度22
/202s m t x a ==
当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.
当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.
例3、一弹簧秤的秤盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k=800N/m ,系统处于静止状态,如图9所示。
现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,
求F 的最大值和最小值各是多少?(g=10m/s 2
)
分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘的质量m 1=1.5kg ,所以此时弹簧不能处于原长,
这与例2轻盘不同。
设在0_____
0.2s 这段时间内P 向上运动的距离为x,对物体P 据牛顿第二定律可得: F+N-m 2g=m 2
a
图7
图8
图9
对于盘和物体P 整体应用牛顿第二定律可得:
a m m g m m x k g m m k F )()()(212121+=+-⎥⎦
⎤⎢⎣⎡-++
令N=0,并由述二式求得k
a m g m x 12-=
,而
2
21at x =,所以求得a=6m/s 2. 当P 开始运动时拉力最小,此时对盘和物体P 整体有F min =(m 1+m 2)a=72N.
当P 与盘分离时拉力F 最大,F max =m 2(a+g)=168N.
问题6:必须会分析临界问题。
例4、如图10,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力FB =2N ,A受到的水平力FA =(9-2t)N ,(t 的单位是s)。
从t =0开始计时,则:
A .A物体在3s 末时刻的加速度是初始时刻的5/11倍;
B .t >4s 后,B物体做匀加速直线运动;
C .t =4.5s 时,A物体的速度为零;
D .t >4.5s 后,AB的加速度方向相反。
分析与解:对于A 、B 整体据牛顿第二定律有:F A +F B =(m A +m B )a,设A 、B 间的作用为N ,则对B 据牛顿第二定律可得: N+F B =m B a
解得N t
F m m F F m N B B A B A B
3
416-=-++=
当t=4s 时N=0,A 、B 两物体开始分离,此后B 做匀加速直线运动,而A 做加速度逐渐减小的加速运动,当t=4.5s 时A 物体的加速度为零而速度不为零。
t >4.5s 后,A所受合外力反向,即A 、B 的加速度方向相反。
当t<4s 时,A 、B 的加速度均为B
A B
A m m F F a ++=。
综上所述,选项A 、B 、D 正确。
例5、如图11所示,细线的一端固定于倾角为450
的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球。
当滑块至少以加速度a=向左运动时,小球对滑块的压力等于零,当滑块以a=2g 的加速度向左运动时,线中拉力T=。
分析与解:当滑块具有向左的加速度a 时,小球受重力mg 、绳的拉力T 和斜面的支持力N 作用,如图12所示。
在水平方向有Tcos450-Ncos450=ma; 在竖直方向有Tsin450-Nsin450
-mg=0.
由上述两式可解出:0
045
cos 2)
(,45sin 2)(a g m T a g m N +=-=
由此两式可看出,当加速度a 增大时,球受支持力N 减小,绳拉力T 增加。
当
a=g 时,N=0,此时小球虽与斜面有接触但无压力,处于临界状态。
这时绳的拉力T=mg/cos450
=mg 2.
当滑块加速度a>g 时,则小球将“飘”离斜面,只受两力作用,如图13所示,此时
细线与水平方向间的夹角α<450
.由牛顿第二定律得:Tcos α=ma,Tsin α=mg,解
得
图10
T N
图12
mg g a m T 522=+=。
例6、0.013m/s 2
17.3m/s 2
5.78m/s 2
水平向左。